
EDB
User’s Manual

Embedded Performance, Inc.
P/N 0380-0162-10 Rev 05

May, 2002

EPI has made every attempt to ensure that the information in this document is accurate and complete. However, EPI
assumes no responsibility for any errors, omissions, or for any consequences resulting from the use of the information
included herein or the equipment it accompanies. EPI reserves the right to make changes in its products and
specifications at any time without notice.

Any software described in this document is furnished under a license or non-disclosure agreement. It is against the law to
copy this software on magnetic tape, disk, or other medium for any purpose other than the licensee's personal use.

Embedded Performance, Incorporated
606 Valley Way
Milpitas, California 95035
USA
(408) 957-0350

Acknowledgments:

CDB is a trademark of Third Eye Software.
MS DOS and Windows are trademarks of Microsoft Corporation.
Ethernet is a trademark of XEROX.
EDB and EPI are trademarks of Embedded Performance, Inc.
All other trademarks are trademarks of their respective companies.

© 2002 Embedded Performance, Incorporated.
All rights reserved.

Contents
About this Manual . vii
Version . vii
Notational Conventions in this Manual . vii
Symbols Used in this Manual . viii
Support. viii
Documentation Feedback . ix

Chapter 1 Introducing EDB . 1
EDB History. 1
The EDB Graphical User Interface . 2

Title Bar . 2
Scroll Bars . 3
Toolbars . 3
EDB Windows . 3

Window Size and Positioning . 3
Window Toolbars . 3
Window Short-Cut Menus . 3

Starting EDB . 4
Startup Arguments . 4
EDB Invocation Examples . 5
EDB Startup Files . 5
Application Program Startup File . 6

Configuring EDB Options . 6
Properties Dialog . 6
Option Settings Dialog . 7

Opening and Loading an Application. 8
Selecting the Program to Debug . 8
Loading your Program . 9

Executing and Controlling your Application. 9
Starting, Stopping, and Continuing . 9
Stepping . 10
Breakpoints . 10

Navigating your Application . 10
Navigating with the Execution Window . 10
Navigating with the Call Stack Window . 11
Navigating with the Trace Window . 12
 EDB User’s Manual 0380-0162-10 Rev 05 iii

Contents
Examining your Application Data. 12
Examining via the Watch Window . 12

Editing Watch Data . 13
Examining via the Memory Windows . 14
Examining via the Register Windows . 14
Examining via the Call Stack Window . 14

Chapter 2 Using the EDB . 15
EDB Caveats. 15
EDB Files . 17

Executable Files . 17
EDB Symbol Files . 18
Initialization Files . 18
Command Files . 19
RTOS DLL File . 20
Custom Registers and Register Windows . 20

Predefined spaces. 22
Sample Register Definition file. 24

Invoking EDB. 24
Conventions . 27

Context View Point . 27
Debugger Command Operands . 27
Expressions . 28
Procedure Calls . 29
Variables . 29
Special Variables . 30
Pre-Defined Special Variable Names . 31
Display Formats . 32

MIPS Target Differences . 35
ARM Target Differences. 36

Chapter 3 Debugger Commands . 39
Command Summary . 40
Viewing Commands . 44

Enter Procedure . 44
List Objects . 44
View Context . 45
String Search . 46
Trace Stack . 46
Evaluate Expression . 46

Program Control Commands . 47
Load File . 48
File Open . 48
Run . 48
Continue . 49
Go From Line . 49
Kill Program . 50
Step . 50

Breakpoint Commands. 50
Set Breakpoint . 53
iv 0380-0162-10 Rev 05 EDB User’s Manual

Contents
List Breakpoints . 54
Delete Breakpoint . 54
If . 55
Print Source . 55
Quiet . 55
Print String . 56

Assertion Commands. 56
Create Assertion . 56
Modify Assertion . 56
Exit Assertion . 57

Record and Playback Commands . 57
Command Recording . 58
Output Recording . 58
Command Playback . 58
Set Quiet Mode . 58
Set Command Sub-System Mode . 59
File Read . 59
File Write . 60
Goto . 62
Shift / Unshift . 62

History Commands . 63
List History . 63
Execute History . 64
Edit History . 64

Miscellaneous Commands . 64
Again . 65
Shell . 65
Display Alias . 65
Display Configuration Options . 65
Enter Alias . 66
Enter Configuration Option . 66
Address Format . 67
Fix-It . 68
Indent (tab size) . 68
Info . 68
Kill Alias . 68
MON Subsystem . 68
Number Format . 69
Quit . 69
Source Directory . 69
v . 69
Yak (comment line) . 70
Toggle Case . 70

Chapter 4 Menu and Window Reference . 71
EDB Menus . 71

File Menu . 71
Edit Menu . 73
View Menu . 75
Exec Menu . 82
EDB User’s Manual 0380-0162-10 Rev 05 v

Contents
Misc Menu . 85
Window Menu . 85
Help Menu . 85

Windows and Dialogs . 86
Break Points Dialog . 86
Call Stack Window . 90
Execution Window . 91
ICE Trace Display Window . 96
ICE Trace Specification Dialog (ICE targets only) . 98
Memory Window . 99
Option Settings Dialog . 102
Profiler Data Window . 103
Profiler Setup Dialog . 105
Program Input/Output Window . 107
Properties Dialog . 108
Register Window . 112
RTOS Window . 113
Session Window . 114
Watch Window . 115

Index . 119
vi 0380-0162-10 Rev 05 EDB User’s Manual

About this Manual
This is the user manual for the (EDB). The information in this manual is
intended to serve both new and experienced users. It outlines the installation,
configuration, and operation of the EDB.

Version
This manual covers version 2.3 and later of EDB.

Notational Conventions in this Manual
The following conventions are used in the syntax descriptions of this manual.

Bold face Bold is used for characters that must be entered exactly
as shown.

Italic is used to indicate a general category of input that will
be described in detail in the command operands
section. Italic is also used when a new term or concept
is first introduced, and for the title of other documents.

monospaced A non-proportional type face is used for the names of
registers, processor and emulator signals, and
configuration options.

sans serif A sans serif type face is used for the names of windows,
dialog boxes, menus, and fields.

<key> Angle brackets indicate that the item enclosed within
the brackets is the name of a special key on the host's
keyboard. Some examples are <enter>, <backspace>,
and <esc>. In some cases several keys must be held
down simultaneously, which is indicated with a dash
between them. For example, <ctrl-C>.
EDB User’s Manual 0380-0162-10 Rev 05 vii

About this Manual
[] Square brackets are used to enclose an optional
operand or group of operands. The brackets are not to
be entered in the command.

{} Curly braces are used for grouping purposes. These are
not to be entered in the command. They either enclose a
list of alternatives, one of which must be chosen, or they
enclose a group of operands that are to be taken
together in the context of a list of alternatives or a
subsequent repetition.

... An ellipses (three dots in succession) is used to indicate
that the preceding operand, or group of operands if
enclosed by [] or {}, may optionally be repeated one
or more times.

| A vertical bar is used to indicate that the operand, or
group of operands if enclosed by [] or {}, on either
side of the bar may be entered, but not both.

.. Two dots in succession indicate the inclusion of
sequential items between given start and stop points.
For example, a..z refers to the entire alphabet including
a and z.

Symbols Used in this Manual
This manual uses the following symbols to help identify notes, cautions, and
warnings:

Cautions or Warnings:

Notes:

Support
Before contacting EPI for EDB support please check the Frequently Asked
Questions (FAQ) list to see if your question has already been answered. Select
the FAQ option from our Web site:

http://www.epitools.com

If you still need help and cannot find the information via the FAQ or online
documentation, you can either send email to EPI at the Internet address below,
call us at 408 957-0350, or FAX us at 408 957-0307.

support@epitools.com

!

i

viii 0380-0162-10 Rev 05 EDB User’s Manual

About this Manual
Be sure to include your name, the version number of the product in question,
your target processor type and vehicle type (ICE or SIM), your Internet
address and phone number with all correspondence.

NOTE: The best way to show us your product information is to capture the
screen output of the debuggers DI command and send it in an email or FAX.

If your question is sales-related please do not send email to our support
department. Send it to the Internet address below:

sales@epitools.com

Documentation Feedback
If you have comments on how to improve EDB’s documentation, send us
e-mail at this Internet address:

edb@epitools.com

Be sure to include your name, the version number of EDB (in the About box),
your target processor type, target vehicle type (ICE or SIM), your Internet
address, and phone number with all correspondence.

You can also use this address for EDB product suggestions.

NOTE: Sorry, we cannot answer technical support questions from this address.
Please send all support-related email to: support@epitools.com

We would especially like to get your thoughts in these areas:

• What important information is missing or hard to find?

• Does the Contents section help you locate the information you need?
What groups of topics do you recommend that we add?

• Do you have suggestions for improvements?

Your comments will become the property of Embedded Performance Inc.

i

i

EDB User’s Manual 0380-0162-10 Rev 05 ix

About this Manual
x 0380-0162-10 Rev 05 EDB User’s Manual

EDB User’s Manual 0380-0162-10 Rev 05
1
Introducing EDB
EDB is the generic name for EPI’s source level debugger. The debugger can
be used to control and debug programs running on a number of target
system types supported by EPI.

This chapter provides an overview of EDB and describes the main features
of EDB’s Graphical User Interface. This chapter includes the following
sections:

• EDB History

• The EDB Graphical User Interface on page 2

• Starting EDB on page 4

• Configuring EDB Options on page 6

• Opening and Loading an Application on page 8

• Executing and Controlling your Application on page 9

• Navigating your Application on page 10

• Examining your Application Data on page 12

EDB History
EPI’s source level debuggers are derived from CDB, a widely available
debugger originally developed by Third Eye Software. EPI has extensively
modified CDB to support remote debugging of embedded systems. EDB is
EPI's windowing interface and is built on top of both CDB and EPI's low
level debugger MON. The command line user interfaces for both of these
debuggers is available from inside EDB via the Session Window.

Depending on the options ordered, EDB may be used to debug programs
which are running on the EPI Instruction Set Simulator on a host computer,
or programs running remotely on an actual embedded hardware system
via either EPI's remote debug kernel or an In-circuit Emulator.
1

1 Introducing EDB
The EDB Graphical User Interface
EDB provides standard Windows menus, toolbars, tool tips, and a status
bar. The status bar provides expanded information about menus and
toolbar buttons. Hovering the mouse cursor over a toolbar button also
provides a few extra words about the underlying icon or object. This is
known as a tooltip.

The following figure shows the EDB Graphical User Interface with a
number of windows open in the workspace.

Title Bar

The Title bar is located along the top of a window. It contains the name of
the application and document. To move the window, you can drag the Title
bar. You can also move dialog boxes by dragging their Title bars.

The Title bar contains the common Windows elements (such as minimize
button) as well as the application and document names, and the connection
device (for ICE targets).
2 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
Scroll Bars

Displayed at the right and bottom edges of most windows. The scroll
boxes inside the scroll bars indicate your vertical and horizontal location in
the document. You can use the mouse to scroll to other parts of the
document.

Toolbars

EDB provides several toolbars: a general toolbar, a toolbar to control the
execution of your program (Execution toolbar), and a toolbar to change the
processor context displayed (Context toolbar). By default the Execution
toolbar displays a button label below the icon. These labels can be turned
off or on via a checkbox in the Properties dialog. A smaller toolbar can be
useful when you are short on screen real-estate. Also, note that each of
these toolbars can be dragged around on the screen and docked to the sides
of the workspace. The EDB toolbars are described in General Toolbar
Command on page 79, Execution Toolbar Command on page 80, and Context
Toolbar Command on page 81.

EDB Windows

EDB provides a number of windows to help with debugging your
application. The details about these Windows and their usage are
provided in Navigating your Application on page 10 and Examining your
Application Data on page 12. Here we address some generic usage issues
applicable to all EDB windows.

Window Size and
Positioning

Every EDB window can be positioned and resized within the EDB desktop
window. This positioning and other attributes can be saved across debug
sessions via the Save Session Info item in the File menu, or by selecting the
Save Layout at Exit and Restore Layout at Startup options in the Properties
dialog.

NOTE: If you select the Save Session Info item in the File menu, you should
turn off the Save Layout at Exit option in the Properties dialog. This way
each time EDB is started it has the same session layout.

Window Toolbars Most of the EDB windows contain toolbars inside the window. These
toolbars provide buttons and fields which operate on the window itself.
Some of these windows position their toolbar at the top of the window,
others at the bottom. Any toolbar can be turned off via the window’s
short-cut menu (see Window Short-Cut Menus below).

Window Short-Cut
Menus

Every EDB window has a short-cut menu that can be accessed by clicking
the right mouse button. Mostly the items in a short-cut menu mirror
operations available via the toolbar. However, the Short-Cut menu can be a
superset of the toolbar operations. Every Short-Cut menu also includes a

i

EDB User’s Manual 0380-0162-10 Rev 05 3

1 Introducing EDB
window toolbar toggle and a Properties item that brings up the Properties
dialog.

NOTE: Although the short-cut menu is normally brought up via a right
mouse click, it can be called up via combining the <Shift-F10> keys. This
may vary with the international version of Windows, so you may need to
consult your Windows manual for details on bringing up a short-cut menu
via the keyboard.

Starting EDB
EDB is a complex debug tool and supports many startup options and
associated startup files. The details of these options can be found in
Invoking EDB on page 24. The files are described in EDB Startup Files on
page 5. Here we just touch on some of the basics.

EDB can be invoked either from a Windows icon or the command line.
Typically, starting EDB from one the icon’s setup by the installer will not
work without first adjusting the program arguments to fit your
environment. EDB comes in three different executable flavors. Each flavor
is designed to execute with a different target environment. Depending
upon your order you may only have a subset of these available to you:

Program name: Target system type:

edbice The EPI ICE version, HP-Probe. Supports all EPI ICE
and some foreign ICEs.

edbsim The EPI Instruction Set Simulator version.

NOTE: Throughout this manual, the debugger will be referred to as EDB.
The only difference between the various versions is that the emulator-
targeted versions provide access to the emulator's trace features.

Startup Arguments

Only a few arguments are needed to get started with EDB. Below are
abbreviated descriptions of these arguments. Full descriptions can be
found in Invoking EDB on page 24.

-vcpu cpu is a number specifying the target CPU type.
Valid values for cpu are listed in your MON
Assembly level debugger manual. Typically you can
just specify your chip number: For example:
-v5000.

-d device_name Specifies the name of the communications channel to
be used to connect to a remote target. This option is
not applicable with the Instruction Set Simulator.
Typically this is the name of a serial device or an
Ethernet host name. Ethernet host names must be

i

i

4 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
followed by :e with one exception (if the ICE being
connected to is an HP Software Probe, the Ethernet
name must be followed by :h). The default device
name is COM1.

NOTE: Using Ethernet for communication requires
setting up IP and hostname addresses in your
network.

-n If using an RS-232 serial channel for communication
to an ICE, this argument specifies the speed of the
channel. It does not apply to the simulator
(EDBSIM). n is a digit in the range 0..7, specifying a
baud rate of 1200, 2400, 4800, 9600, 19,200, 38,400,
57,600, or 115,200. Not all hosts will be able to
support the highest speeds. Your maximum speed
may be limited for Remote Server Targets by the
speed of the target system’s serial chip.

EDB Invocation Examples

The following examples demonstrate invoking EDB from a DOS command
window for various environments. Note that your window’s icon can be
modified to add any of these parameters.

Using an EPI ICE, connecting to it using COM2 (RS-232 serial channel) at
115.2K baud, and target contains an NEC 4300 or derivative:

edbice -t com2 -v4300 -7

Using an EPI ICE, connecting to it using Ethernet with IP address
115.1.2.234, and target contains an IDT 4700:

edbice -t 115.1.2.234:e -v4700

Using EPI’s Instruction Set Simulator and the NEC 5400:

edbsim -v5400

EDB Startup Files

EDB has several startup files of significance to most users. They are listed
below in the order of there usage (loading) by EDB. A complete startup file
list and details can be found in sections under EDB Files on page 17.

cdb.rc This file is a simple EDB command file (that is, a text
file of EDB commands) that is always loaded by EDB
at startup. EPI supplies a default cdb.rc file in the
same directory as the EDB executables.

startXXX.cmd Although this file is not a built-in EDB startup file, it
is loaded by the default cdb.rc file shipped with
EDB. XXX corresponds to the ICE (ice) and
simulator (sim) flavors of EDB. This file typically

i

EDB User’s Manual 0380-0162-10 Rev 05 5

1 Introducing EDB
contains startup configuration logic and is
auto-loaded by EPI’s low level debugger MON.
Many times a default startXXX.cmd file can be
found that is already setup for use with a particular
chip/target evaluation board. Because of this
pre-customization work, users are encouraged to
add new configuration/setup commands to the
ustrtXXX.cmd file which is auto-loaded by all the
sample startXXX.cmd files.

ustrtXXX.cmd This file is also not a built-in EDB startup file. It is
loaded by the default startXXX.cmd file shipped
with EDB. XXX corresponds to the ICE (ice) and
simulator (sim) flavors of EDB. This file is typically
empty of commands and is intended to be a
convenient place for users to add new
configurations or startup commands.

NOTE: Although EDB can be started via an icon and
appears not to require a PATH variable, it may not be
able to find all it's startup files unless your PATH
variable is configured to point at the EPI tools bin
directory.

Application Program Startup File

Whenever a new application program is opened in EDB (at startup, or by
selecting Program to Debug from the File menu), EDB looks for a command
file with the same base name (and in the same directory) as the program
being debugged, plus an extension of .rc. Note that when you stop
debugging an application and exit, EDB auto-creates this file and uses it to
save breakpoints and other miscellaneous options considered specific to an
application program.

Configuring EDB Options
EDB has many options and many ways to configure them. Here we touch
on the basics of configuring these options via the various dialogs. Many
options can also be configured via MON’s EO/DO commands. See Enter
Configuration Option on page 66 and Display Configuration Options on
page 65 for more details.

Properties Dialog

This dialog is brought up by selecting Properties from the Edit menu or
from any Window Short-Cut menu. The dialog contains three tabs to access
different option classes.

i

6 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
The General tab allows configuration of screen related data such as font
size, scroll bars, etc. Configuring the font size to match the smallest size
you can comfortably read will maximize usage of screen real-estate. Not
turning on horizontal bars also allows a few more lines in each window. If
you need to see a line extending past the screen edge, you can put the
cursor on the line and hit the <End> key to move the window. Data
configured via this tab is normally saved by selecting Save Layout from the
File menu. Note that one of the items in the tab makes this automatically
stored when you exit EDB. See General Properties on page 108 for more
details.

The Program Options tab allows configuration of data normally thought to
relate to your application program being debugged. This includes the
sections to download, program arguments, calling convention used by
your program, etc. All the data configured via this tab can be stored in
your program.rc file. See Program Options Properties on page 109 for more
details.

The Color tab is also screen related data. It allows you to change the colors
of various screen items. Note that colors used on the Session and Program
I/O windows cannot be configured via this screen. Instead, you must use
the Option Settings Dialog on page 102 to do this.

Option Settings Dialog

This dialog is accessed via the Option Settings item in the View menu. It
allows you to view and edit various options. All the options displayed
here can also be viewed and edited via EO/DO commands (see the MON
manual for details on these commands). Note that a few of the options
EDB User’s Manual 0380-0162-10 Rev 05 7

1 Introducing EDB
configurable via this dialog can also be configured via the Properties dialog
(described above and in detail in Properties Dialog on page 108).

The general toolbar contains a button to access the Option Settings
dialog, shown below.

NOTE: You can use this dialog to browse through the options details. Use
the option list box on the left side to select options. The option description
box gives help on the selected option.

Opening and Loading an Application
Before you can begin debugging your application program you must tell
EDB its name and use the Load button to download the programs data to
your target.

Selecting the Program to Debug

Below are the steps to select and load into EDB your application program.
Your application program should be a linked executable compiled with
debug information turned on (most compilers do this via the -g option).

1. Select Program to Debug from the File menu. EDB maintains a
recently used program list which can be used to quickly select
previously debugged program.

2. Type in or browse to the application program you wish to run and/
or debug. Note there is no standard default file extension for

i

8 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
embedded application programs and none is provided by the
dialog (EPI’s own sample application programs are built with no
extension).

After you select the application program, EDB reads it and converts the
application’s debug information from your native compilers debug format
into a format EDB uses. This data is stored in the file created by taking the
base-name of your application program and adding .cdb. Once this file is
created this conversion step is not done again until your application
program changes.

EDB also looks for and loads a file program.rc as your program but with
.rc appended. This file is used by EDB to store saved breakpoints and
some program specific options. The Session Window shows the loading
and execution of this command file commands (if any).

Finally, EDB updates the execution window to point to the function symbol
main. This means the module of your application that contains the
function main is loaded into EDB and appears in the Execution window.
Note, if EDB cannot find your source file, it will ask to supply its directory.

NOTE: If you purchased EPI’s compilation tools you can select one of our
sample programs. cdbdemo1 is a good first choice.

Loading your Program

The Execution Toolbar’s Load button is used to download your
application’s target code to your target system. Many times the application
code is already in the target system (flash, etc.) in which case you still need
to click the load button, but first, you configure the sections downloaded as
none. This is done via the Program Options tab in the Properties dialog (see
Properties Dialog on page 108). Note that this download configuration is
saved in the program.rc mentioned above.

Executing and Controlling your Application

Starting, Stopping, and Continuing

To run your program, click the GO button or select Go from the Exec
menu. Execution continues until one of several events occurs:

• A breakpoint is hit.

• Your program completes via an exit() call.

• An exception occurs (bus error, etc.).

• The stop button is hit .

i

EDB User’s Manual 0380-0162-10 Rev 05 9

1 Introducing EDB
The GO button also continues execution after stopping. The Restart or
Load buttons are used to restart from the beginning of your program.

Stepping

EDB supports many forms of stepping. Typically, source level single step
 and step over are the most commonly used. As you single

through your program EDB execution window is updated to show
progress through your program.

Breakpoints

Breakpoints can be extremely helpful in looking into the run details of your
program. EDB provides both an easy to use breakpoint mechanism and an
extensive breakpoint dialog, both accessible through the Execution
window, shown in Navigating with the Execution Window on page 10.

The Execution window provides a code/breakpoint field to the left of every
source line. Lines where the compiler produced associated target machine
code are identified by an little gray circle. You can double-click this circle to
toggle a breakpoint on the line. The circle turns red and fills when a
breakpoint is set. For details, see Execution Window on page 91.

The View/Edit Breakpoints button brings up the Breakpoints dialog. This
dialog allows viewing/editing of complex breakpoints. For details, see
Break Points Dialog on page 86.

Navigating your Application
EDB has one main window used to browse through your source code. This
is the Execution Window. Several other windows provide a feature called
hyper-linking, which provides a quick way to move the Execution Window’s
viewpoint to a source line reference available in other windows. (For more
information on hyper-linking, see Context View Point on page 27.)

Navigating with the Execution Window

From this window you can easily browse/navigate your program source
code, associated machine code, set/delete breakpoints, and examine
program variables. The window also contains a configurable Edit button
that allows you to send current source file name and line number to your
editor of choice. This allows a convenient way to make source changes via
the editor you are familiar with.

The Execution Window, shown below, displays one source file at time. If
the current viewpoint in your program does not have any source code
10 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
associated with it, then the window will only display disassembled code.
For details, see Execution Window on page 91.

The Func dropdown listbox in the Execution Window toolbar provides a
quick and easy way to move around inside your program from function to
function. Normally the listbox shows only functions that were compiled
with debug turned on, and therefore, should have source code available.
The listbox can also be configured to display all your program functions or
your program modules names. The configuration is set via the Short-Cut
menu’s Select Box Mode option.

Navigating with the Call Stack Window

The Call Stack window displays your current execution call stack. Use the
button to bring it up. (See also Examining via the Call Stack Window on
page 14, and for details, see Call Stack Window on page 90.)

Like the Execution Window, it contains a clickable viewpoint icon field on
the leftmost screen edge. Double clicking in this field will move the
Execution Window’s viewpoint (hyper-link) to the execution point within
the selected function.
EDB User’s Manual 0380-0162-10 Rev 05 11

1 Introducing EDB
Navigating with the Trace Window

When in mixed or inst display mode, the Trace Window displays sources
lines mixed in with the associated machine instructions. Note that the
Trace Window is only available when using ICE targets with tracing
capabilities. (For details, see ICE Trace Display Window on page 96.)

The Trace Window Short-Cut menu contains a hyper-link option which,
when selected on a source line, causes the Execution Window’s viewpoint
to move to the selected function. Note that if the function/line being
selected is currently in the call stack you cannot examine local variables via
this kind of hyper-linking. Use the Call Stack Window for context
hyper-linking.

Examining your Application Data
EDB provides several types of windows for examining your programs
data. Typically program variables are best view via the Watch Window,
whereas blocks of memory or registers are best viewed via the Memory and
Register Windows.

Examining via the Watch Window

This window provides the most convenient way to view your program
data. It contains four different panes (views) via the toolbar buttons
(watch1, watch2, etc.). When debugging, the multiple panes can be used to
group data objects based on context relevance. (For details, see Watch
Window on page 115.)
12 0380-0162-10 Rev 05 EDB User’s Manual

Introducing EDB 1
The watch data display is divided into two columns. The left side contains
an editable name field. The right side displays the object data. See Display
Formats on page 32 for details on data formatting options.

Using the Keyboard

New object names can be inserted via the keyboard by editing an existing
left side box. Position the cursor at the last empty box and type or paste in
your object name.

Using Drag and Drop

Many windows also support dragging selected data via the mouse. This
can be a convenient way to add objects to the Watch window. Dragging
variable names from the Execution Window is particularly useful.

NOTE: The window records the previous text output of each value and
upon the next stop of execution identifies those values that have changed
by displaying them in a different color.

Editing Watch Data A double-click on the right side of an object display allows the object's
value to be changed via a simple edit dialog, shown below.

i

EDB User’s Manual 0380-0162-10 Rev 05 13

1 Introducing EDB
Examining via the Memory Windows

This window is used to view blocks of memory in raw data formats. Both
the memory display format and object width are selectable via the Memory
Window’s toolbar or Short-Cut menu. You can open any number of
Memory Windows. (For details, see Memory Window on page 99.)

Examining via the Register Windows

The Register Window groups and displays registers according to their type.
The window’s toolbar contains a listbox to configure the class of registers
displayed in the window. (For details, see Register Window on page 112.)

NOTE: The window records the previous values of registers and upon the
next stop of execution identifies those registers that changed by displaying
them in a different color.

Examining via the Call Stack Window

In its default mode, this window displays your call stack and function
arguments. However, it can be configured (via the Short-Cut menu) to
display each function’s local variables as well. This can provide a
convenient way to view all of a function’s local variables. (See also
Navigating with the Call Stack Window on page 11 and, for details, see Call
Stack Window on page 90.)

i

14 0380-0162-10 Rev 05 EDB User’s Manual

EDB User’s Manual 0380-0162-10 Rev 05
2
Using the EDB
This chapter provides information on using the debuggers with the JEENI.
It includes the following sections:

• EDB Caveats

• EDB Files on page 17

• Invoking EDB on page 24

• Conventions on page 27

• MIPS Target Differences on page 35

• ARM Target Differences on page 36

EDB Caveats
This sections lists important caveats that will help you use EDB effectively.

• If you are using #define macros that take arguments, do not break
the argument list with a new line during invocation. The standard
Unix preprocessor (cpp) will generate the correct expansion, but all
line numbers for the rest of the file will be off by one. This will
cause EDB to report the wrong location in the code. This is a
preprocessor problem and affects only Unix users who force the
compiler to use the Unix preprocessor rather than the built-in
preprocessor.

• The debugger depends on the symbol table for information about
how machine instructions map to high-level language source lines.
Most C compilers only issue line symbols at the end of each
statement or line, whichever is greater. For example, if the two
statements a=0; b=1; are on one line, the only way to put a break
after the assignment to a and before the one to b, is to use the
disassembler to spot the right location, and use the bi command, or
use the Mixed or Disassembled Execution Window modes.

• Multi-line statements (if's with a new line in the middle of the
condition) sometimes only have a line symbol generated at the end
of the list of conditions. If you try to set a break on any but the last
15

2 Using the EDB
line of this statement, the break may actually be set on the
preceding statement. You can tell when this happens, because EDB
will tell you which line it set the break on and whether it is different
(less) than what you expected. In windowing versions of EDB, this
problem does not arise because the Execution Window indicates the
source lines where a breakpoint can be set.

• Some C “statements” do not put the code where you would expect
it. For example, assume:

5: for (i=0 ; i<9 ; i++)
6: {
7: foo(i);
8: }

A breakpoint placed on line 5 will probably be hit only once. The
code for incrementing is usually placed at line 8. This problem is
especially severe under optimization, and you will have to
experiment to become familiar with your compiler's code
generation habits. EPI recommends that you use single stepping to
see the order in which the source lines print out.

• String constants entered from the command line are stored in a
magic buffer provided by the object file cdb.o that should be linked
with your program (see Executable Files on page 17). EDB starts
storing strings at the beginning of this buffer, and moves along as
more assignments are made. If EDB reaches the end of this buffer, it
will go back and reuse the buffer from the beginning. Usually, this
will not cause any problems, however, if you are using very long
strings, or you assign a string as a constant to a global pointer, you
may find that things are shifting under your feet. You can provide
more string space by modifying a copy of .../lib/src/cdb.s to
increase the size of the block at label __cdbbuffer, and link in the
resulting cdb.o file instead of the supplied version.

• Source file names are limited in length by the limitations of the
object file format being used by the compiler. For COFF this limit is
14 characters, not including the directory path.

• If your object file format does not support path names to source
files (for example, COFF) then you can have a problem debugging
modules that have non-unique names. To avoid this limitation, you
should ensure that all your modules have unique names. You can
also turn on debug information (-g) only for the module you are
interested in debugging.

• In some cases, it may not be possible to access local variables in the
current procedure if you are stopped at the procedure entry point.
This can happen if you step into the procedure or if you set a
breakpoint at the procedure entry with procname b. A Step
command will execute the procedure prologue, setting up the stack
frame for the procedure and allowing all local variables to become
“live”.

• If you are using #include directives, please note that the contents
of the included file cannot be debugged.
16 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
EDB Files
Unless otherwise specified, EDB searches for the following files by looking
first in your current directory, then in the startup directory (current
directory at time of startup, then in the directory where the EDB program is
located, then in each directory named in your PATH environment variable.
Some categories of files are listed below:

• Executable Files

• EDB Symbol Files on page 18

• Initialization Files on page 18

• Command Files on page 19

• RTOS DLL File on page 20

• Custom Registers and Register Windows on page 20

The RTOS DLL file is an optional DLL file that implements RTOS specific
integration features. The default name of this file is rtos_api.dll which
is designed to work with ATI Nucleus Plus RTOS. Normal Windows DLL
search rules are used to locate this file.

Executable Files

EDB can load executable files produced by EPI’s compilation tools. Some
GNU compilers are also supported (contact the EPI sales department for
details). In order for EDB to be able to do source level operations and to
access static and local variables, the C compiler must be directed to
produce full symbolic debug information. For most compilers, this is done
by specifying the -g command line option. In order to allow string literals
or functions in your program to be used in expressions evaluated by EDB, a
special object file (cdb.o) must be linked with the rest of your program. If
you bought your compiler and assembler tools from EPI, the compiler
driver program will automatically link in cdb.o if you use it to run the
linker. Source code for cdb.o is provided in the ./lib/src/cdb.s file.

Currently, EDB only supports debugging one program (executable file) at
any one time. You can download multiple programs’ contents, but you
cannot have debug information loaded in EDB for more than one program.
This is normally no problem, since in most cases the entire embedded
system is implemented in a single executable image that is eventually
burned into firmware.

EDB does have an option which allows users to separate their boot code
from their application code. The EO option load_osboot controls this and
defaults to off. If enabled, EDB automatically attempts to find and load a
program called osboot whenever you load your application program.
Note that EDB’s restriction on only one porgram with source level
information still applies, so no source level information is loaded for
osboot.
EDB User’s Manual 0380-0162-10 Rev 05 17

2 Using the EDB
If osboot or its equivalent has been burned into ROM, or is linked with the
application code into a single executable, EDB’s Load Osboot option in the
Option Setting dialog box should be disabled (see Option Settings Dialog on
page 102).

EDB Symbol Files

To enhance its portability, EDB maintains symbolic information in its own
internal format. An auxiliary program, cdbtrans, is used to convert
symbolic information in a COFF, ELF, or other supported executable file, to
EDB's format. cdbtrans reads the COFF or ELF file and writes out a file
with the input file's name and .cdb appended. On MS/DOS hosts, .cdb
will replace any specified file name extension.

EDB will run cdbtrans automatically if the cdb file does not exist or if it is
older than the executable file being debugged. On MS/DOS machines,
there may not be enough memory remaining after EDB is loaded to allow
cdbtrans to be run, especially if the COFF file has a large symbol table. If
this happens, run cdbtrans manually before running EDB, giving it the
name of the target program (for example, cdbtrans hello).

Initialization Files

EDB has three types of initialization files: Target initialization, User
Interface initialization, and Command History.

edbxxx.ini Since opening and positioning the windows
pertinent to your particular debugging task may
become tedious, windowing versions of EDB allow
you to save your screen layout by choosing the Save
Layout item in the File menu. This information is
normally stored in the Windows directory under the
name edbxxx.ini where xxx identifies the type of
target, either ICE or simulator (sim).

If the appropriate file cannot be found at startup,
EDB defaults to opening only the Session and
Execution windows.

The table below shows the initialization file that is
associated with each EDB executable:

startedb.hst This is the command line history file name.
Normally, it is created in your working directory
upon debugger shutdown. However, if at startup

Program Name Initialization File

edbsim startsim.ini

edbice startice.ini
18 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
the file is found on your search path, then it will be
updated to the same file/path.

EDB has one other special case startup file that is used only when
referenced on the command via a -m option.

opt_file This is an ASCII text file containing EDB command
line options for one or more specific target programs,
and/or a set of default command line options. If the
filename is given with a -m option, EDB will scan
the file looking for the name of the current target
program starting in column 1. If a match is found,
the rest of that line and each subsequent line that
starts with a tab character will be processed as EDB
command line options. If no match for the program
name is found, the default options will be processed
if there is a section beginning with an asterisk (*) in
column 1.

The following example shows a default options file:

vrtxapp -e first_task -d epiice3:e
-a ./task1 -d ./task2

boot -d com2 -5
* -d epiice0:e

Command Files

Command files contain one or more debugger commands and may be read
or written by EDB (see the < and > commands under Record and Playback
Commands on page 57). When a Command file is read, EDB will execute
each command as if it was entered at the keyboard. Command files may be
specified on the command line when the debugger is invoked via the -p
option. If this is done, the commands contained in the file are executed and
their results displayed automatically.

Automatic Startup
Command Files

On startup, EDB looks for two command files to playback global and
program specific initialization commands. These files are played back
before any command files specified with the -p option.

.cdbrc cdb.rc
This is the global startup command file. There can only be
one copy of this file for each user; if it exists, it is played
back at the start of every EDB session. The global startup
command file should contain anything you always want
done (for example, like setting up command aliases or
configuring options, etc.).

The file name is .cdbrc on Unix hosts, and cdb.rc on
MS-DOS hosts. On all hosts, the file must be located in the
directory specified by the environment variable HOME. HOME
is maintained automatically by the command shell on Unix
EDB User’s Manual 0380-0162-10 Rev 05 19

2 Using the EDB
systems. On MS-DOS systems you will have to add the
command SET HOME=drive:path to your AUTOEXEC.BAT or
other setup batch file. If you would like the HOME directory
to be your current working directory, add the command SET
HOME=. to your setup batch file. If there is no HOME
environment variable, EDB will not look for the global
startup command file.

program.rc
Whenever a new program is opened in EDB (at startup, or
via the File Program to Debug menu), EDB will look for a
command file with the same base name (and in the same
directory) as the program being debugged, plus an
extension of .rc. This file should contain commands specific
to the program you are debugging. The user can cause EDB
to create this file by choosing Yes at the Save Session Info
exit prompt, or by selecting Save Session Info from the File
menu. When creating the file, EDB will write the necessary
commands to recreate your current list of search directories,
breakpoints, assertions, and load option settings. When
starting up, EDB processes this file and issues a warning if
the file is older than the program being debugged, since it
may contain breakpoint commands that are no longer valid.
Breakpoints are saved with absolute addresses (not
symbolic addresses).

RTOS DLL File

Starting with version 1.4, EDB has RTOS integration features. These
features allow for RTOS object browsing and thread specific breakpoints.
The latter can be very useful for setting breakpoints on OS interfaces used
by multiple threads. The logic to gather the RTOS data is encapsulated in a
dynamic link library (DLL) file. This DLL is designed to be easily
customized to third party or customer operating systems. This DLL file
should be stored in the same directory as the EDB executable file(s). Note
that only one pre-configured DLL is supported at this time (for ATI’s
Nucleus Plus RTOS). If you are customizing your own DLL then you will
need to replace this rtos_api.dll with your own version. The specific
DLL loaded (if any) can be identified via EDB's help/about dialog.

If you are licensed for the RTOS feature, source code is available for the
default DLL. Users can customize it to work with currently unsupported
off the shelf or custom operating systems. For a complete list of supported
operating systems contact sales@epitools.com.

Custom Registers and Register Windows

EDB 2.4 introduces the customizable register file, which is of particular
importance to SOC designers. This feature allows new registers (memory
based or CPU based) to be added to the EDB and MON command
20 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
language. It also allows new register window types to be created and any
defined registers to be added.

EDB and MON search for the register file in a sub-directory based on the
chip’s architecture family type. mips for MIPS architecture based targets
and arm for ARM based targets. The register file name is created from the
selected chip type (see the definition of the debuggers -v switch, described
in Invoking EDB on page 24).

Include files are supported to allow common processor elements to be
placed in one file. The INCLUDE command, shown below, begins reading
from the referenced file and returns to the calling file when done. Nested
include files are also allowed.

INCLUDE "filename"

Character names (space_name) can be used for predefined debugger
spaces (space_id). Using a character name provides more readable
register definitions. Also, you can set more than one space_name for any
space_id, including memory spaces.

CPU_SPACE = space_name space_id

Where:

space_name is an alphabetic name.

space_id is one of the pre-defined space numbers used by
EDB and MON.

New register names are definable with the information below:

REG = reg_name offset space_name byte_size
[SEQ first last obj_inc inc]

Where:

reg_name is an alphabetic name.

byte_size is one of: {1|2|4|8}.

first is a numeric value. This value is the first number
appended to reg_name to form a sequence.
Sequences make it easy to represent a consecutive
set of like named registers (for example: r0..r31).

last is the last number in the sequence (see first).

obj_inc determines the object increment (number of
byte_size objects) to add for each register in the
sequence.

inc allows the register number sequence to increment by
the specified increment value.

For Example: Let’s say we want to have a sequence of 4 byte-size
registers mapped to memory at 0, with each register in the low byte of
successive machine words (32 bits). If the designer chooses to name
these registers z1, z3, z5, ..., then the definition would be:
EDB User’s Manual 0380-0162-10 Rev 05 21

2 Using the EDB
REG=z 0x0 MEMORY_P 1 SEQ 1 7 4 2

Registers can also be broken down into displayable fields. Any previously
defined register or register sequence can be set up as field encoded. Note
that if a field breakdown is given for a register sequence, the fields apply to
every register in the sequence. Fields of more than one bit are displayed as
field_name = hexidecimal value. One bit fields are displayed as an
uppercase or lowercase field_name where uppercase means a TRUE or 1
value.

REG_FIELD = reg_name field_spec

Where:

reg_name is an alphabetic name previously defined via a REG
statement. Note that for sequence registers a full
sequence register name must be given (including the
number).

field_spec = field_name high_bit low_bit [, field_spec]
field_name is an alphabetic name.

high_bit is a numeric value in the bit range of the given
register. Must be >=low_bit.

low_bit is a numeric value in the bit range of the given
register. Must be <=high_bit.

EDB also supports adding additional Register window types (panes). A
window definition is simply a list of register name pairs. All the registers
logically contained between, and including the two referenced registers,
are included in the list. Registers within the window are logically broken
down into groups based on the name. Sequence registers are displayed in
groups with wrapping occurring at the right screen edge. Registers with
field symbol definitions always display one per line. The only supported
display format for registers is hex.

REG_WINDOW_CLASS = class_name reg_name_list

Where:

class_name is an alphabetic name.

reg_name_list = {reg_name reg_name}|[, reg_name_list]
reg_name is an alphabetic name previously defined via a REG

statement. Note that for sequence registers, a full
sequence register name must be given (including the
number).

Predefined spaces In the debugger’s architecture sub-directory you can find a file called
spaces.rd, which defines names for the debugger’s space designators.
This file is automatically read at startup time. You can refer to it for
definitions of coprocessors’ spaces etc.
22 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
Below is a sample of a MIPS spaces.rd file:

Sample ARM spaces.rd file:

// EDB Register Definition File (space.rd): defines various
// common MIPS access spaces.

SPACE=MEMORY_V 0x0 // Virtual Memory

SPACE=MEMORY_P 0x9 // Physical Memory

SPACE=GR 0x100 // r0 - r31

SPACE=TLB 0x200 // TLB registers 0..?

SPACE=MR 0x300 // mdhi, mdlo, (acc0-2 54xx)

SPACE=LX 0x400 // Lexra specific

// Coprocessor access spaces

SPACE=CP0_CTL 0x900 // Some newer MIPS32 chips use this space

SPACE=CP0_GEN 0x800 // Coprocessor control register (cause, sr, etc)

SPACE=CP1_CTL 0xA00 // floating point control

SPACE=CP1_GEN 0xB00 // floating point

SPACE=CP2_CTL 0xC00 // CP2 Typically not used

SPACE=CP2_GEN 0xD00 // "

SPACE=CP3_CTL 0xE00 // Mips I/II architecture chips only

SPACE=CP3_GEN 0xF00 // Mips I/II architecture chips only

// MIPS III and above (including MIPS32/64) architectures

SPACE=ICT 0xE00 // Instruction Cache tags

SPACE=DCT 0xF00 // Data Cache tags

// EDB Register Definition File (space.rd): defines various

// common ARM access spaces.

SPACE=MEMORY_V 0x0 // Virtual Memory

SPACE=MEMORY_P 0x9 // Physical Memory

SPACE=CRNT 0x100 // r0 - r15

SPACE=USER 0x200 / User/System

SPACE=SVC 0x300

SPACE=IRQ 0x400

SPACE=FIQ 0x500

SPACE=ABORT 0x600

SPACE=UNDEF 0x700

SPACE=STATUS 0x800 // cpsr, spsr{svc,abort,undef,irq,fiq}

// coprocessers (bits 0..3) define coproc #, (16 registers per)

SPACE=COPROC0 0xf00

SPACE=COPROC1 0xf01
EDB User’s Manual 0380-0162-10 Rev 05 23

2 Using the EDB
Sample Register
Definition file

The example below demonstrates a definition for some memory mapped
registers (common in hardware designs).

Below is the resulting EDB Register Window:

User Register Definition
files:

Although EPI provides some register definition files for standard complex
CPU’s, many users are creating cores with custom peripherals or need
register based access to their target board’s peripherals. Custom Register
Definition files can be created by users and read in via our debuggers File
Read (FR) command. Please see the description of this command in the
EDB command section for more details.

Invoking EDB
EDB is executed by the following command line:

edb [[-options]... [binfile]]

This command causes the debugger to load symbolic information for a
target program and prepare it for execution. The program will not be
downloaded to the target system memory until you issue a command to
load the file or to begin execution. Replace edb with the name of the
specific version of EDB you want to run. See Chapte r1, Introducing EDB,
on page 1 for details.

// Sample Register Definition File - Demonstrates the
// declaration of new registers, register fields, and an EDB
// register window for them.

INCLUDE "spaces.reg"

// Map device "a"'s registers -- contains three 32 bit registers

REG=dev_a_ctrl 0xFF00A000 MEMORY_P 4

REG=dev_a_data1 0xFF00A004 MEMORY_P 4

REG=dev_a_data2 0xFF00A008 MEMORY_P 4

REG_FIELD=dev_a_ctrl status 2 0, lock 3 3

REG_WINDOW=Device_A dev_a_ctrl dev_a_data2
24 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
This command can be specified with one or more of the following options.
Each option must begin with a dash (-) and may be followed by
parameters.

Options Description

-a directory Names an alternate directory to search for source files.
Multiple -a options can be specified, and the alternate
directories are searched in the order specified. If a file
is not found in an alternate directory, the current
directory is searched.

-c name Adds name to the title line of EDB. This can be helpful
to identify multiple instances of EDB running on the
desktop. name can be any number of characters,
symbols, and numbers. If the name includes spaces, it
must be enclosed in double quotes.

-d device_name Specifies the name of the communications channel to
be used to connect to a remote target. This option is
not applicable with the Instruction Set Simulator.
Typically this is the name of a serial device or an
Ethernet host name. Ethernet host names must be
followed by :e with one exception (if the ICE being
connected to is an HP Software Probe, the Ethernet
name must be followed by :h). Note that this option
can be saved in the target initialization file. The default
device name is COM1 on MS-DOS hosts and
/dev/ttya on Unix hosts.

There is also a special option for serial device channels.
:s,d[n], which causes communication to start at the
baud rate given by either the n option following the d
or a completely separate -n option. Without this
option, the default startup rate is always 9600 baud
and a serial driver must support baud rate changing to
allow for faster rates.

-e entry Specifies the name of the first procedure of the
program (the default is main). This is the point in your
program where debugging should begin and is
normally the first high-level language procedure that
will get control. If you begin execution with a source
level single-step operation, EDB will execute up to this
location.

This is not usually the actual entry point address where
execution will start. EDB normally starts execution at
your program’s entry point, as configured in your ELF
or COFF execution file. This behavior can be controlled
via the EO option load_entry_pc.

-i Intrusive Startup mode (default). Resets the processor
and clears any breakpoints. Use -ni to connect to a
target without loosing this target state information.
This option is only available for targets that support
concurrent target debugging.
EDB User’s Manual 0380-0162-10 Rev 05 25

2 Using the EDB
-l Little Endian Startup mode. Indicates that the target
system being connected to or configured is little
endian.

-m opt_file Causes a default options file to be read. This file may
contain various EDB command line options that will be
applied depending on the name of the program being
debugged. See Initialization Files on page 18 for a
description of this file.

-ni Non-Intrusive Startup mode. Recovers the state of a
running system (for example, breakpoints, application
running or stopped). If the target is currently
executing in interactive mode, the debugger will enter
interactive mode and not disturb the running program.
This command is only available for targets that support
concurrent target debugging.

-p file After EDB initializes and processes any opt_file, it
will play back the commands from file. Multiple -p
options can be used. The effect of using multiple -p
options is as if each file begins with a < file
command to invoke the next one. In other words, the
command files will be played back in the opposite
order in which they appear on the command line. In
any case, -p command files will be played back after
any automatic startup command files (see Command
Files on page 19).

-r file Record all commands to file.

-R file Record all output Session window output to file.

-v cpu cpu is a number specifying the target CPU type. Valid
values for cpu are listed in your MON Assembly level
debugger manual. You can also see the CPU list
supported by your version of EDB by starting EDB
with the option -v cpu, exiting EDB, and then
examining the file sesslog.txt created in the current
directory.

-z Standalone Startup mode.

-n Specifies the speed of the serial communications
channel used to connect to a remote target. This option
does not apply to the Instruction Set Simulator
(edbsim). n is a digit in the range 0..7, specifying a
baud rate of 1200, 2400, 4800, 9600, 19,200, 38,400,
57,600, or 115,200. Not all hosts will be able to support
the highest speeds. In particular, the maximum valid
speed for Unix hosts is -5 (38,400 baud). Your
maximum speed may be limited for Remote Server
Targets by the speed of the target systems serial chip.

Options Description
26 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
Conventions

Context View Point

EDB supports the concepts of current file, current procedure, and current line.
This is referred to as the context view point and affects the scoping of
expression data references from your program. Normally the context view
point matches the execution point (the current program counter location),
but can be changed via the e (Enter), p (Print source), and vc (View Context)
session commands, the Func box in the Execution window toolbar (see
Execution Window on page 91), the Default Context box in the Context
Toolbar (see Context Toolbar Command on page 81), and by hyper-linking.

Hyper-linking is the means by which the Execution Window’s context point
can be quickly moved to a particular procedure. The Call Stack Window
supports hyper-linking by right-clicking in the far left column which
causes the Execution Window to change context to the current execution
point within the referenced function. This feature is also available from the
Call Stack Window Shortcut menu.

When you use the p, w, or W commands to display lines of source, the context
point (line) is preceded by a > character. See Execution Window on page 91
for details on how the context and execution points are identified there.

Debugger Command Operands

In the command descriptions that follow, the following operands are used.

cmds One or more valid EDB commands, separated by
semicolons. For example, t ; c.

exp Any expression. Where exp is allowed but not required, the
default is 1 unless otherwise stated. See Expressions on
page 28 for more information.

file A file name.

binfile The path name of the executable file to be loaded. EDB
supports the loading of EPI COFF and ELF files
produced by any compatible linker. If binfile is not
specified, you will be prompted to enter the program
name.

NOTE: Arguments to the program being debugged are
specified either via the Program Properties dialog (see
Program Options Properties on page 109), or on the r
(run) command. Program arguments are not specified
on the EDB command line.

Options Description
EDB User’s Manual 0380-0162-10 Rev 05 27

2 Using the EDB
format A string specifying how to display the results of an
expression evaluation. See Display Formats on page 32 for
details.

line A line number. Where line is allowed but not required, the
default is the current line.

number A single number (for example, 9, not 4+5). As in C, number
is a sequence of decimal digits, or 0 followed by octal digits,
or 0x followed by hex digits.

proc The name of a procedure (function) in your program.

stack A number indicating a stack depth, as reported by the t
(stack trace) command. This is used to identify a particular
activation of a procedure.

var The name of a variable in your program, or a special EDB
variable. See Variables on page 29 for ways to specify
variables in hidden scopes.

Expressions

Expressions in EDB may in general be composed of any combination of
variables, constants, function calls, and C operators, with the following
special considerations:

• Do not type a <CR> in the middle of an expression. EDB is an
interactive program, not a compiler, and <CR> signifies the end of
the command. There is currently no provision for continuation
lines.

• If the program is not currently active (you haven't done an r
command yet, or the program has terminated), expressions can
contain only constants and global address expressions.

• Use two slashes (//) for division instead of a single slash (/). This
is to avoid confusion with the exp / format command.

• Do not start an expression at the beginning of a line with a dash (-)
or pound sign (#), or it will be confused with the dash (-) or pound
sign (#) command. You can make the expression unambiguous by
wrapping it in parentheses (for example, -3 will not be treated as
move to 3 lines before the current line).

• A term of the form proc#line evaluates to the memory address of
the code associated with the given line number in the file
containing the given procedure. Similarly, (#line) means the
memory address of the code associated with the given line number
in the current file.

NOTE: C expression semantics apply, including issues of type. If
you use the name of a simple variable (like an int), the value you
get is the contents of that variable. If you use the name of an array
without all its subscripts, or a function name without its (possibly
empty) argument list, the value you get is the address of the object.

i

28 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
Of course you can get the address of a simple variable via the C
address of operator (&).

Procedure Calls

Functions in your program may be invoked from the command line as part
of an expression. For example:

foo = AddArgs(1, 2) * 3

NOTES:

• Procedures that return more information than a long are generally
not handled correctly if the return value is to be used, as in the
above example.

• Using procedures in expressions requires that the helper file cdb.o,
be linked into your target program.

If there are any breakpoints encountered during command line procedure
invocation they will be processed as usual. This means that command line
procedure calls can be a very useful tool. Once a fault has been traced to a
specific function, appropriate breakpoints can be set and the function
invoked with various combinations of arguments.

The list procedures command (l p) can be used to get a list of procedures
in your program. If, while debugging, you would like to be able to invoke
library procedures that are not referenced anywhere in your program (and
are therefore not loaded), you can add a dummy function to your program
that contains phony calls to the procedures.

Variables

Variable names under the debugger are exactly as you named them in your
source code, but EDB may be instructed to ignore alphabetic case when
searching the symbol table. The Z command (see Miscellaneous Commands
on page 64) can be used to toggle case sensitivity in all searches.

When your program has stopped, EDB can access every variable that is
active at that point: globals and statics, and local variables in each active
procedure. This is in spite of the fact that you may have many instances of
a variable hidden by nested scopes. The following naming conventions are
supported to allow you to access the correct version of any variable:

var Standard C scope rules: var must be visible at the current
line of the current procedure. Locals, local statics, and
parameters of the current procedure are checked, then file
scope statics, then globals, and finally EDB special variables.
Remember, it is the current viewing point and not the
location where execution last stopped that controls which is
the current line, procedure, and file.

i

EDB User’s Manual 0380-0162-10 Rev 05 29

2 Using the EDB
proc#var
Search the stack for the most deeply nested occurrence of
procedure proc. If found, use that procedure activation's
stop point and perform a scope search as above. If proc is
not currently active, the search will begin with file scope
statics for the file containing proc. This allows file scope
statics that are hidden by a duplicate name at a lower scope
to be found.

stack#var
Specifies the procedure activation that is at stack frame
stack as the starting point for the scope search. When this
form is used, var must be a local, local static, or parameter
of the procedure. This is the only way to locate a local
variable in a recursive procedure activation that is not the
current procedure nor the most deeply nested.

:var Searches for a global variable var.

$var Searches for an EDB special variable var (see Special Variables
on page 30).

. (dot) The dot is the name for the last thing you looked at. It has the
same type that you used to view it. This means that if you
look at a long as a char (for example, long_var / cb), then
. will be considered to be a char. This is useful for
functioning on things in a very different way than the
default type allows, like changing only the second highest
byte of a long. Dot may be assigned a value, used in
another expression, etc.

NOTE: The dot in EDB is not the same as in some other
debuggers, where it is simply a number. If you use it, it will
be de-referenced like any other name, and if you enter .+30,
it will perform whatever arithmetic is appropriate for that
type of dot. For example, if i is an int variable and cp is a
pointer to char, then the sequence of commands:

i ; . = . + 10 ; cp ; .[30]
is equivalent to:

i ; i = i + 10 ; cp ; cp[30]

Special Variables

EDB supports the concept of special variables. Special variables are names
for things that are normally not directly accessible, either because they are
machine registers or because they are internal to the debugger. If you
simply type a name (for example, foo), the normal scope search will scan
for a special variable of that name only after failing to find a match in the
user program, and you will get an error if it is not found. If you preface the
name with a $, then only the special variable list is searched, and if a
matching name is not found, one will be created.

i

30 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
These user special variables have the same type as the last expression that
was assigned to them. For example, entering $mumble = 3*4 will create
special variable $mumble, assign it the value 12 and make it type int.
Special variables may be used like any other variable except that you may
not meaningfully take their address.

Pre-Defined Special Variable Names

The following variables are always defined by EDB:

Register names These are target-dependent. See MIPS Target
Differences on page 35, for a discussion of available
register names.

result This can be used to check the return value of a
procedure.

There are a number of debugger internal special variables. Modifying their
values will change the way the debugger works. You can list them (along
with user specials) with the command l s. The currently defined
debugger variables are:

SIGNAL The signal number that will be passed back to the
target program (not actually meaningful for current
target programs).

R_SIGNAL The signal number that caused the program to stop
(likewise not currently meaningful).

DELTA This tells the disassembler the maximum distance an
address can be from the nearest label or global and
still produce the form foo+0x02bc.

LOAD_TEXT Indicates whether the Text section type should be
downloaded. A value of zero indicates that no
sections of type Text should be downloaded. A
non-zero value indicates that this section type
should be downloaded.

LOAD_DATA Indicates whether the Data section type should be
downloaded. A value of zero indicates that no
sections of type Data should be downloaded. A
non-zero value indicates that this section type
should be downloaded.

LOAD_BSS Indicates whether the BSS section type should be
downloaded. A value of zero indicates that no
sections of type BSS should be downloaded. A
non-zero value indicates that this section type
should be downloaded.

LOAD_LIT Indicates whether the LIT section type should be
downloaded (RDATA section for mips targets). A
value of zero indicates that no sections of type LIT
EDB User’s Manual 0380-0162-10 Rev 05 31

2 Using the EDB
should be downloaded. A non-zero value indicates
that this section type should be downloaded.

screen_length The current screen length. Not used in EDB.

Debugger special variables beginning with an underscore (_) are not
normally listed. They represent the internal state of the debugger, and
should not be changed. To see them all, type l s _.

_LANGUAGE Shows which expression evaluator is in use. -1
indicates auto-select based on the type of the current
file, 0 indicates C, and 1 indicates FORTRAN.

_FILE The name of the current file.

_PROCEDURE The name of the current procedure.

_LINE The current line number.

_BREAK The current breakpoint number.

_TIP_TYPE The type of the current debugger target vehicle
environment. The possible values are listed below:
Unknown 0
ICE 1
Simulator 2

_TIP_SUBTYPE The subtype of the current debugger target vehicle
environment. The possible values are categorized
according to _TIP_TYPE below:
_TIP_TYPE = ICE (1)

Unknown 0
HP Probe 5
MAJIC 6

_TIP_TYPE = Simulator (2)
Unknown 0
Normal 1
Custom 2
Tracing 3

Display Formats

When you use an expression evaluation command (See Chapte r3,
Debugger Commands, on page 39), the optional format operand may be used
to control the number of items displayed, the size of each item, and the
display format to use. The syntax of the format operand is:

[count][fmt][size]

where:

count Optional. Is the number of times to apply the format.

fmt Is the format style.

size Optional. Indicates the number of bytes to be formatted.

For example, foo/4x2 would print, starting at foo, four 2-byte numbers in
hex.
32 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
If present, count must be a number and size must be a number or one of
the following mnemonic letters:

b 1 byte.

s 2 bytes (short). (Must be used with a format designator)

l 4 bytes (long).

For example, foo/xb prints a hex byte. The default value for count is 1,
and the default for size depends on the type of the expression. For
instance, if the expression consists of a variable of type char, size will
default to 1, but if it is an int variable or expression, size will default to 4.

A common use of count is to specify how many locations to display when
dumping an area of memory. For example, *0x28000/20xb will display
the 20 bytes starting at address 0x28000 in hex.

NOTE: count makes sense only when the expression evaluates to an
addressable argument or with formats that interpret the expression as an
address. For example, 0/3x will display 0x0, 0x4, and 0x8 - probably not
what was intended.

The format style fmt is one of the following letters:

a Display a string using the expression as the address of the
first byte. This will print up to the first null character or 128
characters, whichever occurs first. The size value can be
used to force printing of a given number of bytes, regardless
of the occurrence of null characters.

B Display the expression value in binary. The capital B is used
to avoid conflict with the size b.

c Display the expression value as a character.

d Display the expression value in decimal. This is the default
for things of integer type.

e Display the expression value in %e floating point notation.
When using the e or f formats, size specifies the precision
desired. If unspecified, a reasonable default is used. The
actual object size is implied by the expression type (4 for
float, 8 for double).

f Display the expression value in %f floating point notation.
When using the e or f formats, size specifies the precision
desired. If unspecified, a reasonable default is used. The
actual object size is implied by the expression type (4 for
float, 8 for double).

g Display the expression value in %g floating point notation.
(Default for expressions with float or double type).

i Disassemble a machine instruction at the address specified
by the expression.

i

EDB User’s Manual 0380-0162-10 Rev 05 33

2 Using the EDB
I Also disassembles a machine instruction, but if the address
maps evenly to a line number in the source, the source line
is also displayed. This is useful for viewing what the
compiler generated for a line of source. For example, the
command foo#3 / 5I will display line 3 in procedure foo,
followed by the corresponding 5 machine instructions.

n Use the normal format, based on type. This is what one gets
if a format operand is not specified.

N This is the same as n, except that the feature of calling a
user-supplied function to display structures and unions is
suppressed (see Structure Formatting on page 34).

o Display the expression value in octal.

p Display the name of the procedure containing the address
specified by the expression. Also displays the file name and
the source line or instruction that map to the address.

s Display a string using the expression as the address of a
pointer to the first byte. Same as *exp/a.

S Do a formatted dump of a structure. This is the default for
things of type struct. See Structure Formatting below. The
capital S is used to avoid conflict with the size s.

t Display the type of the object. In this case, the expression
must consist of an addressable object (variable or function).
Structure and procedure objects will include the names and
types of their members and parameters.

u Display the expression value in unsigned decimal. This is
the default for things of unsigned integer type.

x Display the expression value in hexadecimal.

The formats that print numbers allow an upper case character to be
synonymous with appending the letter l to specify size. For example, O
will print in long octal, as will ol. Of course, this seldom matters on most
RISC systems where a plain int is the same size as a long.

Structure Formatting

When EDB dumps a struct or a union, it uses a straightforward
formatting algorithm. For large, complex, or bizarre structures, this may
not provide the kind of display you want to see. To allow complete
flexibility in displaying structure contents, EDB provides a mechanism for
you to supply your own display routine for any struct or union type.

Before using its default formatting rules to display a struct or union with
tag name FOO (for example), EDB checks for a procedure in the target
program with the name _FOO (that is, the tag name with an underscore
character prepended.) If found, it will invoke that procedure, passing it
two arguments: a pointer to the struct or union and the size parameter
(default value is -1, user passable values are 0 to INT_MAX). You can code
34 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
the procedure in your program to display the passed-in struct or union
any way you like.

For example, if fooFirst was a node in a tree, you might type fooFirst/
n2 (for structures n is the same as S). The routine _FOO would then dump
the members of fooFirst and its first two levels of children (or whatever is
appropriate). This feature may be overridden by using the N format,
instead of S or n.

If you are using EPI's compiler and library, and have included support for
the host operating system interface, you can simply use printf() to
display the contents of the struct or union and the output will appear on
the debugger console as if it was generated by EDB. Support for passing
operating system requests back to the debugger is automatically available
in Instruction Set Simulator and Remote Server target types.

NOTE: Using procedures in expressions requires that the helper file cdb.o
be linked into your target program.

MIPS Target Differences
This section documents aspects of the debugger that are specific to the
MIPS processor types.

Register names

pc, sp, a0-a3, etc.

These are the names for the registers, program counter, stack pointers,
argument registers, etc. Virtually all the register names defined in the chip
manual for your specific Mips chip are available. To see a complete list use
the l r command, but be prepared for a lot of output - the R3K family
processors have a lot of registers, and some of them have two names (for
example, ra and r31). A partial list of the register mnemonics is given
below. Registers are usually 32 to 64-bits depending on your chip. Note
that modifying the contents of registers when you are debugging a
high-level program can produce undesirable results.

r0 - r31 Processor zero's general registers.

sr, cause, ... Common names for coprocessor registers are also
supported. These vary widely from chip to chip.
Consult your CPU User's Manual for details.

cX_0 - cX_31 & gX_0 - gX_31
Coprocessor X registers, where X is 0..2.

fcr0, fcr31 Another name for coprocessor one's control registers
zero and thirty-one. .

i

EDB User’s Manual 0380-0162-10 Rev 05 35

2 Using the EDB
result, resultf These can be used to inspect the return value of a
procedure. result is another name for r2, the
register used to return the first (and usually only)
word of a function result. resultf is another name
for f0, the register used to return floating point
function results.

tl0 - tl63, th0 - th63
TLB registers. These registers are not available on
Mips chips that do not support virtual memory.

ARM Target Differences
This section documents aspects of the debugger that are specific to the
ARM processor types.

Register names:

pc, sp, lr, r0-r15, spsr, etc.

These are the names for the registers, program counter, stack pointers,
argument registers, etc. Virtually all the register names defined in the chip
manual for your specific ARM chip are available. To see a complete list use
the l r command, but be prepared for a lot of output. A partial list of the
register mnemonics is given below. Register names are not case sensitive.
ARM registers are 32 bits. Note that modifying the contents of registers
when you are debugging a high-level program can produce undesirable
results.

r0 - r15, sp, lr Processor’s current general registers. Note that sp,
lr and pc are synonyms for r13, r14 and r15
respectively. The ARM architecture has a banked
register scheme which means the value of these
registers depends upon your current mode of
execution. Each of the banked registers can be
accessed using the mode qualifiers as shown below.

r8_M - r14_M, sp_M, lr_M
Processor’s user mode general registers where M is
either execution mode user or fiq . (e.g. r8_user,
sp_fiq, …).

r13_M - r14_M, sp_M, lr_M
Processor’s user mode general registers where M is
one of the following execution modes: svc, abort,
undef, irq

cpsr, spsr ARM’s status registers.

cpsr_M, spsr_M ARM’s mode relative status registers, where M is
either svc, abort, undef, irq, fiq.

cX_0 - cX_15 Coprocessor X registers, where X is 0..15.
36 0380-0162-10 Rev 05 EDB User’s Manual

Using the EDB 2
result These can be used to inspect the return value of a
procedure. result is another name for r0, the
register used to return the first (and usually only)
word of a function result. Note that this name is
not available within the MON command language.
EDB User’s Manual 0380-0162-10 Rev 05 37

2 Using the EDB
38 0380-0162-10 Rev 05 EDB User’s Manual

EDB User’s Manual 0380-0162-10 Rev 05
3
Debugger Commands
EDB has a large number of commands for viewing and manipulating the
program being debugged.

EDB has two Command Processing modes. The default mode is EDB’s
native mode and is fully described here. The alternate mode uses our
low-level debugger (MON) command interface. For ICE users, many of the
MON level ICE only commands such as DT (Display Trace, etc.) are also
available from EDB command mode. Please refer to the MON manual for
details on these commands.

Because of the richness of the EDB windowing interface, you may never
need to use most of these commands, since the vast majority of debugger
functions can be performed by menu selections and mouse actions. There
are a few operations that can only be performed via commands, such as
searching the source code for a string of text, or listing the typedef table.
Also, it is sometimes quicker and easier to perform an action by typing the
corresponding command in the Session Window. For example, it may be
quicker to type e main than to select main from the Func list box.

Many commands have various forms that are not representable in a single
unambiguous line of syntax, even with the square bracket/curly brace/
vertical bar notation to indicate optional entries and choices. In these cases,
more than one syntax line is given to specify the alternate forms.

Most command arguments may be omitted, as indicated in the
corresponding command syntax. Omitted arguments are defaulted as
indicated in the discussion of each command.

Multiple commands, separated by a semi-colon (;), may be entered on a
single command line. In fact such a command list, delimited by curly
braces, can be given as an argument to certain EDB commands.

The command descriptions in this chapter are grouped into sections, with
each section documenting a category of related commands. The categories
are:

• Command Summary on page 40

• Viewing Commands on page 44
39

3 Debugger Commands
• Program Control Commands on page 47

• Breakpoint Commands on page 50

• Assertion Commands. on page 56

• Record and Playback Commands on page 57

• History Commands on page 63

• Miscellaneous Commands on page 64

Command Summary

Name Syntax Description

Again <CR> Repeat previous command, if possible.

Create Assertion a cmds Create a new assertion with the given
command list.

Modify Assertion exp a {a|d|s} Activate (a), delete (d), or suspend (s)
assertion number exp.

A [a|s] Toggle, activate (a), or deactivate (s) the
overall state of the assertions mechanism.

Set Breakpoint [line] b [cmds] Set breakpoint at line b.

[exp] b[i] [cmds] Set breakpoint at address exp.

[stack] b{u|U|b|B} [cmds] Set breakpoint at procedure return point (bu)
or beginning (bb).

List Breakpoints B List current breakpoints.

Continue [exp] c[i] [line] Continue from breakpoint with pass count
exp, to line line. i means continue in
interactive mode.

[stack] c{u|U} Continue from breakpoint to procedure
return point.

Display Alias da [*|alias] Shows the name and replacement text for
one or all currently defined aliases.

Display Options do [*|string|cfg_opt] Display the configuration options.

Delete Breakpoint D Delete all breakpoints.

[number] d Delete breakpoint number, or current
breakpoint.

Enter Procedure e [proc|file] Enter procedure proc or file file within the
current execution context.

[stack] e Enter active procedure at stack stack, or
print the current file, procedure, and line
number (e alone).
40 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Enter Alias ea alias cmd_list Creates an alias (synonym) for a list of one or
more commands.

Enter Options eo cfg_opt = value Provides a mechanism to configure the
operation of the debugger and emulator.

Address Format f ["printf-format"] Change address display format.

Open File fo Opens a new COFF or ELF file to debug.

File Read fr c file_name [p_value] Reads in a command file.

fr m file_name [addr] Reads in memory binary image file.

fr {I|RD|TD|TF|TS} file_name Reads in an initialization, trace display, trace
format, or trace specification file.

File Write fw [a|o] {c|o} file_name Opens a command file or output file for
writing.

fw [a|o] m file_name range Writes out a memory image file.

fw[o] {I|TD|TF|TS} file_name Writes out an initialization, trace display,
trace format, or trace specification file.

fw {c|o} {-|+} Temporarily suspends (-) or resumes (+)
logging output to a command or output file.

Fix-it F Find and fix bug.

Go from line g line Go from line line (in the current procedure).

Goto goto label Used to change the order of command
execution when playing back commands
from a command file via the fr command.

List History { h | history } List the 20 most recently entered commands.

Help help Provides online help for EDB.

If if exp {cmds}[{cmds}] Conditionally execute commands.

Indent i number Sets the indent level (tab stop) to every
number columns.

Info I Displays status information.

Kill Program k Terminates the current program, so that it
can be restarted from the beginning.

Kill Alias ka {* | alias} Deletes the name and replacement text for
one or all of the currently defined command
aliases.

Load File lf Downloads the target program.

Name Syntax Description
EDB User’s Manual 0380-0162-10 Rev 05 41

3 Debugger Commands
List objects l {a|b|d|f|g|p|r|s|t}
[string|*] [/format]

List assertions, breakpoints, directories, files,
globals, procedures, registers, specials, or
typedefs.

l [proc|stack] List all parameters and locals of a procedure.

Snap L “Snaps” the viewing point back to the
current context’s execution location. Same as
0 e.

MON subsystem mon Invokes MON subsystem.

Number Format n number Set the default number base used for
displaying integer values.

Print source [line] [p [exp]] Print exp source lines starting at line.

[+|-] [exp] Print line exp lines before (-) or after (+)
current line.

[line] {w|W} [exp] Print “window” of source lines surrounding
line or the current line.

Quiet Q Quiet breakpoint reporting.

Quit q Quit debugger.

Run R Run target program with no arguments.

r [arguments] Run target program with specified or
previous arguments.

Shift/Unshift shift [number] Changes the correspondence between the
arguments supplied on an

unshift [number|*] FR C filename command and the
parameter strings within the command file.

Step [exp] {s|S|si|Si} Single-step, following (s and si) or not
following (S and Si) procedure calls.

Stop sp Halts a currently executing program in
interactive mode.

Trace stack [exp] {t|T} Display a stack trace with (T) or without (t)
locals.

Directory u {string | ”string”} Add directory string to search list.

Comment v Call external editor with current source
module (if any) and line number as
arguments. See the edit_callout option in
the Option Settings dialog for details on the
setup of the editor callout configuration
string. (See Option Settings Dialog on
page 102.)

Name Syntax Description
42 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
View Context vc [exp | exec | thread _name] This command is used to display context
information or change the current global
view context. By default the global view
context is set to the execution context when
execution stops for any reason.

Exit assertion exp x Force an exit from assertion mode, possibly
finishing the command list.

Comment Y comment_text Introduces a full line comment.

Toggle case Z Toggle case sensitivity in searches.

Cmd playback <[<] file Read commands (possibly with single step)
from file.

Cmd recording > [file|t|f|c] Record commands to file, or turn recording
on, or off, or close recording file.

Output recording >> [file|t|f|c] Record screen output to file, or turn
recording on, or off, or close recording file.

String search {/|?}string Search forwards (/) or backwards (?) in file
for string.

Print string "any string" Print the string.

Evaluate expr exp [{/|@} format] Display value of expression using specified
format (or /n).

^ [format] Re-display value of previous object

Quiet Mode {+|-} q Enables (+) or disables (-) quiet mode of
command file playback when using the fr
c command.

MON Mode {+|-} mon Enables (+) or disables (-) the MON
command sub-system regardless of the
current command mode. Useful in
command files that ensure a particular mode
of operation.

EDB Mode {+|-} edb Enables (+) or disables (-) the EDB command
sub-system. Useful in command files that
ensure a particular mode of operation.

Execute history #[#|number|string] [string] Re-executes a previous command.

Edit history %[%|number|string] [string] Edit a previous command.

Shell ! [command-line] Execute operating system command shell.

Comment //[text] Starts a C++ style comment.

Name Syntax Description
EDB User’s Manual 0380-0162-10 Rev 05 43

3 Debugger Commands
Viewing Commands
The commands in this section pertain to displaying source code and
debugger or target program objects. All the commands that display source
code move the current viewing point to a new location in the source file.
There are five viewing commands:

• Enter Procedure

• List Objects

• View Context on page 45

• String Search on page 46

• Trace Stack on page 46

• Evaluate Expression on page 46

Enter Procedure

Syntax: e [proc|file]
[stack]e
L

Description: This command is used to display or change the current procedure. The
first form is used without an argument (e by itself) to display the current
file, procedure, and line number. For example, test.c:PrintLine:28.

The first form is used with proc or file to change the current viewing point
to the first executable source line in proc or the first line in file. The
selected line is displayed.

The third form (L) is a synonym for 0 e, which is a quick way to display
the next line to be executed.

In all cases, the Execution Window will be updated to display the new
context point. (See Execution Window on page 91.)

NOTE: This command does not change the global view context.

List Objects

Syntax: l {a|b|d|f|g|p|r|s|t} [string|*] [/format]
l [proc|stack]

Description: The list command is used to display any number of things. The first form
is used to list, depending on the following letter:

a Assertions

b Breakpoints

d Directories to be searched for source files
44 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
f Source files for which debug information is available, or all
matching procedures if string or * is specified

g Global variables

p Procedures for which debug information is available, or all
matching procedures if string or * is specified. The
procedure instruction mode is also displayed (EXEC or EX16
for MIPS16 and Thumb).

r Register names and values (can be a very long list).

s Special EDB variables

t Typedef definitions known to EDB.

string and *
are valid with all except a, b, and d. If string is supplied,
only those entries in the list with the same initial characters
are displayed. For example, l g list_ will display only
those global variables that begin with list_, and l p
get_ will display all procedures that begin with get_. * is
equivalent to no string (all names match) except when used
with l p or l f to include procedures or files which were
not compiled with source level debug information.

/format is valid only with r and g (registers and global variables),
and is provided since register contents will often be desired
in hex format. Normally, all data is displayed using the /n
format.

The second form is used to list all the local variables and parameters of the
current procedure, or the specified procedure if proc or stack is supplied.
This requires an active target program. Depending on your target
processor type, you may need to have executed past the procedure
prologue for this to work. For instance, if you set a breakpoint directly on
the procedure entry point (via procname b) you may need to do a source
level step before using l to list locals.

View Context

Syntax: vc [exp| exec | thread _name]

Description: This command is used to display context information or change the current
global view context. By default the global view context is set to the
execution context when execution stops for any reason. The vc command
support two types of conceptual contexts (CPU contexts for chips with
multiple register banks, and RTOS based contexts for threads).

If no arguments are given, then the command simply displays the global
view context, execution context, and the range of contexts available for
selection. If exp is given, then the context is set to this CPU context
number. The keyword exec is used to identify the current execution
context. thread_name is the name of a particular thread whose context is
EDB User’s Manual 0380-0162-10 Rev 05 45

3 Debugger Commands
to be selected. Note that thread_names are only supported if a suitable
RTOS_API.DLL has been set up to match your operating system.

If a change of global view context is made, all of EDB’s windows will
refresh their data contents. Changing the context affects the display of the
general (r0 - r31) and PC registers. This generally results in a different call
stack walk-back (C command). Note that this command only affects the
view context and does not change the actual execution context. A Step or
Go command following a context change does not start from the location
display by the PC register. Instead it starts from the execution context’s PC
register.

String Search

Syntax: {/|?}string

Description: Search through the current file for string. If / is used, the search is
forward, starting with the line after the current line. If ? is used, the
search is backward, starting with the line before the current line. Searches
wrap around the beginning or end of the file, and obey the current case
sensitivity setting (see Miscellaneous Commands on page 64). If a string is
not given, the previous one is used. If a match is found, the current line is
changed to the line containing the match and it is displayed.

Trace Stack

Syntax: [exp] {t|T}

Description: This command is used to display a stack trace for the first exp levels
(default 20). If T is specified, the display includes local variables using the
default format /n. Of course, there must be a currently active target
program in order to have a stack to trace.

The Trace stack display begins with the currently executing procedure at
level zero, and proceeds back up the call stack until the top is reached or
the specified number of levels have been displayed. Each line of the
display includes the stack level and the procedure name and arguments.
The stack level displayed by this command is the source of the stack
argument in Enter and Breakpoint commands.

Evaluate Expression

Syntax: exp [{/|@} format]
^ [format]

Description: Any expression appearing by itself, or followed by an optional
display-formatting modifier, is evaluated by EDB and the result is
displayed.
46 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Be careful of expressions starting with one letter variable names, as they
may be taken as a command rather than as a variable. If an expression
begins with a variable that might be mistaken for a command, just
eliminate any white space between the variable and the first operator. For
example, use k= 9 instead of k = 9, use p/n instead of just p.
Alternately, expressions can be wrapped in parentheses. To differentiate an
expression beginning with unary minus from the -exp command
described in Record and Playback Commands on page 57, use (-exp).

If exp is followed by / format, the value of the expression will be
displayed using the specified format. For example, foo/x would print the
contents of foo as an integer, in hexadecimal.

If exp is followed by @ format, the address of the expression will be
displayed using the specified format. For example, foo@o would print the
address of foo in octal.

The second form is used to back up to preceding memory location (based
on the size of the last thing displayed). If format is not supplied, the
previous format will be used. This form should only be used if the
preceding expression evaluation produced an addressable result. For
example, foo or array[10], not foo + 10 or array[10] * 3.

NOTE: Expression evaluation allows dumping of arbitrary regions of
memory. A single location is displayed by de-referencing its address. A
block of locations are displayed by using a format that includes a count.
For example, *0x28000/20x will display the 20 words starting at address
0x28000 in hex.

Expressions can also be continually watched by entering them in the Watch
Window. (See Watch Window on page 115.)

Program Control Commands
There are seven program control commands:

• Load File on page 48

• File Open on page 48

• Run on page 48

• Continue on page 49

• Go From Line on page 49

• Kill Program on page 50

• Step on page 50

i

EDB User’s Manual 0380-0162-10 Rev 05 47

3 Debugger Commands
Load File

Syntax: lf

Description: This command causes the target program to be downloaded. Only those
section types specified in the Load Options dialog box (accessed by menu:
Exec->Load Options) will be downloaded.

File Open

Syntax: fo[file]

Description: This command is used to open a new executable COFF or ELF file to
debug. All the symbolic information associated with your current
program will be deleted, and the new symbols will be loaded. Note that
this command will not download the program to the target system
memory until you issue a command to load the file or to begin execution.
When you open a new file, EDB will give you the option of deleting your
current source directory search paths, or appending to them.

Run

Syntax: r[i] [arguments]
R[i]

Description: This command is used to initialize static and global data and begin
execution of the target program from the current Program Counter
location. If the target program is already active, it is terminated and
restarted, re-initializing all data areas.

The first form is used to run or re-run the program with arguments.
arguments is the set of command line arguments that are to be passed to
the program, not including the program name. If arguments is not
specified, those specified by the previous command, if any, are used again.

If you have not yet started program execution, the r command is the same
as clicking on in the Execution Toolbar. (See Execution Toolbar Command
on page 80.)

The second form is also used to run or re-run the program, but with no
command line arguments (argc = 1, argv[0] = <program name>,
argv[1] = NULL).

The i option starts execution in interactive mode. This mode is only
available if your target supports concurrent debug and allows a subset of
debugger commands to be used while the target is executing. The sp
(Stop) command interrupts the running program and returns EDB to
normal debug mode. Note that EDB's interactive mode command prompt
differs from the normal prompt (for example, EDB(r) means the target is
running).
48 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Continue

Syntax: [exp]c[i] [line]
[stack]c{u|U}

Description: This command is used to continue program execution after a breakpoint or
an interrupt.

In the first form, if exp is given, the current breakpoint will have its pass
count set to this value. If line is given, a temporary breakpoint is set at that
line number. This is shorthand for the pair of commands:
line b; [exp] c.

The i option starts execution in interactive mode. This mode is only
available if your target supports concurrent debug and allows a subset of
debugger commands to be used while the target is executing. The sp
(Stop) command interrupts the running program and returns EDB to
normal debug mode. Note that EDB's interactive mode command prompt
differs from the normal prompt (for example, EDB(r) means the target is
running).

The second form is used to set an up-level (step-out) breakpoint before
continuing. This form is equivalent to the pair of commands [stack] b
{u|U}; c. Thus cu sets a sticky breakpoint while cU sets a non-sticky
breakpoint. cU is especially useful if you accidentally single-stepped into
a procedure you meant to step over, or you want execution to proceed to
some place further up the stack. Note that interactive (concurrent) mode is
not supported for up-level (step-out) breakpoints.

The c command by itself is the same as clicking on in the Execution
Toolbar, if you have already started program execution. Similarly, cU is
the same as clicking on in the Execution Toolbar. (See Execution Toolbar
Command on page 80.)

Go From Line

Syntax: gline

Description: Go from the specified line. This changes the program counter so that line
line is the next execution point, where execution will begin when the next
Continue command is given. This command is commonly used within an
if command in a breakpoint command list to conditionally affect program
execution. For example, to force exit from a loop that is not terminating
normally.

NOTE: While line is file relative, it must refer to a line in the currently
executing procedure. Also, this command should not be used if the
procedure prologue has not yet been completely executed or if part of the
procedure epilogue has already been executed. Also note that there is no
interactive (concurrent mode) form for the g command.

i

EDB User’s Manual 0380-0162-10 Rev 05 49

3 Debugger Commands
Kill Program

Syntax: k

Description: Terminates the current program, so that it can be restarted from the
beginning by a Run or Step command. The Run command will
automatically kill the current program, so this command is needed only in
the unlikely event that you want to restart execution using the Step
command.

After a Kill command, restarting execution by either method will cause the
program to be downloaded to the target system. This is because the data
areas need to be re-initialized as required by the C language.

The Kill command is seldom used, and is retained for compatibility reasons.
A more natural alternative is to use the Load File (lf) command or
button to kill the current program and re-download in one step.

Step

Syntax: [exp] {s|S|si|Si}

Description: Single-steps the program by exp source lines or machine instructions. If
exp is not supplied, the default is 1. Successive <CR>’s will repeat with a
count of 1. s and S step by source statements and display the next
statement to be executed. si and Si step by machine instructions and
display the next instruction to be executed in disassembled form. s and
si step into called procedures, except that s will not step into a
procedure for which debug information is not available. If you
accidentally step into a procedure you do not care about, use the cU
command to set a temporary up-level break and continue. S and Si step
over called procedures, executing calls as a single statement.

See the Execution Toolbar Command on page 80 for button equivalents for
these commands.

Breakpoint Commands
EDB provides a number of commands for setting and removing code
breakpoints. Other than its address, a breakpoint can have many other
items associated with it. These are shown below in the b_opts syntax
description. Breakpoints also may be temporary. All temporary
breakpoints are deleted the next time execution stops, whether they were
taken or not. Although these Session commands are available, most
people choose to use the Break Points dialog (see Break Points Dialog on
page 86) or the breakpoint control mechanisms.

count is the number of times the breakpoint location must be
reached before the break is actually taken. count is
50 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
decremented each time. If count is negative, the breakpoint
will be deleted after it is taken. If count is greater than 1, it
is decremented each time the breakpoint instruction is
executed. Once count reaches 1, the break will be taken and
count will remain 1 until explicitly set to a different value
by a c command. A count of 0 is used by the single step
mechanism and means that the breakpoint is to be deleted
the next time the program stops for any reason. Currently,
the only way count can be set using the command language
is by specifying it on the c command that continues from a
breakpoint.

b_opts The breakpoint command supports a large number of
options that configure additional breakpoint qualifiers.
Note that these option are really intended to be used by
EDB in saving and restoring breakpoints. Users setting their
own complex breakpoints will find the Break Points dialog a
much easier way to setup these kind of breakpoints (see
Break Points Dialog on page 86). The syntax is shown below
with a brief option description of each type.

{
 c {cmds} |
 s {8|16|32|64} |
 {ae|am|asid|ce|p|v|ve|vm} {exp|{exp}} |
 {ba|dis|dr|drw|dw|hwi|i16|tp}
} [b_opts]
c The c command specifies an optional command

list. See cmds below for more details.

s Specifying a size limits the breakpoint to
stopping only when an access of the specified
size occurs.

ae Works in conjunction with the breakpoint
address to provide a range of addresses to break
on.

am Allows the supplied Location/Addr to be masked,
which is useful for breaking on ranges and/or
multiple memory segments (high address
masking). The default value for this field is
0xffffffff.ffffffff.

asid Allows an ASID qualifier to be specified.
Typically, the ASID field is only available for
targets which have dynamically mapped
memory (TLBs).
EDB User’s Manual 0380-0162-10 Rev 05 51

3 Debugger Commands
cmds contains EDB command(s) to be executed when the break is
taken. Individual commands are separated by a semi-colon
(;) and may be enclosed in braces ({}) to delimit the list
given to the breakpoint when some other command follows
the b command. If the first character is anything other than
open brace ({), the rest of the line is given to the breakpoint
as commands. If no commands are specified when the
breakpoint is set, EDB will simply interrupt execution of the
program and prompt for more user commands. If cmds is

ce You can make the current breakpoint
conditional by entering an arbitrary expression
with this option. All variables used in the
condition must be active at the breakpoint
location

p Allows you to specify how many times the
breakpoint location must be hit before the
program is actually halted.

v The value to match before the break hits.

ve Works in conjunction with the breakpoint value
match (v) to provide a range of value to break
on.

vm Allows the supplied breakpoint value match (v)
to be masked, which is useful in breaking on
interesting ranges of values (like odd numbers,
etc). The default value for this field is
0xffffffff.ffffffff.

ba Identifies the breakpoint address as a bus
address rather than a normal mapped or virtual
address. This option is only valid on data (dw,
dr, drw) and hardware instruction (hwi)
breakpoints.

dis Identifies the breakpoint as initially disabled.

dr, dw,
drw

Identifies the breakpoint as a data read, write or
read/write break.

hwi Identifies a hardware level instruction
breakpoint. Useful for setting instruction
breakpoints in ROM areas because the location
does not need to be writable.

i16 Identifies an alternate (16 bit) instruction mode
breakpoint (examples of architectures where this
is valid: MIPS16 and ARM’s Thumb mode).

tp Changes the break point into a trace point. A
trace point does not stop the target. Instead it
triggers the processors trace trigger features.
This option is only valid on data (dw, dr, drw)
and hardware instruction (hwi) breakpoints.
52 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
specified, the command list may include the c command to
cause program execution to continue immediately. For
example: Third b Second b {}; c will set a breakpoint
at procedure Third with the command list Second b {}; c.
When the break is taken, the command list will set a
breakpoint at Second and then continue execution.

NOTE: EDB’s Windows interface now provides a more powerful
and easier to use breakpoint model. Pass counts can be set
when the breakpoint is created and reset each time the break
is taken. Also, the breakpoint can be made conditional
directly, rather than relying on an if command in cmds.
See Break Points Dialog on page 86 for more details.

There are several breakpoint commands:

• Set Breakpoint

• List Breakpoints on page 54

• Delete Breakpoint on page 54

The following commands, while not strictly part of the breakpoint group,
are used almost exclusively in the command list of breakpoints.

• If on page 55

• Print Source on page 55

• Quiet on page 55

• Print String on page 56

Set Breakpoint

Syntax: [line] b [b_opts]
[stack]b{u|U|b|B} [b_opts]
[exp] b[i] [b_opts]

Description: Sets a breakpoint at a source line or an arbitrary address.

The first form is used to set a breakpoint at a particular source line. If line
is not specified, then the breakpoint is set at the current line. Be aware that
the C compiler may not associate the selected line with a code address. In
this case, the breakpoint will actually be set at the first following line that
corresponds to generated code. See EDB Caveats on page 15.

The second form is used to set a breakpoint at a procedure's return point or
entry point. The procedure is identified by its call stack level, so you must
have a currently active program to use this form. The type of break is
specified by the second character of the command (following the b). An
upper case letter causes the breakpoint to be temporary, rather than
permanent.

i

EDB User’s Manual 0380-0162-10 Rev 05 53

3 Debugger Commands
Specifying bu or bU sets a permanent or temporary up-level breakpoint
that will be taken immediately on return to the specified level. If stack is
not supplied, the current procedure's caller is assumed. This is commonly
done after accidentally single-stepping into a procedure. The commands
bU ; c will execute the remainder of the current procedure at full speed,
breaking on return to the caller ready for further single-stepping. The
command cU accomplishes the same thing.

Specifying bb or bB sets a permanent or temporary breakpoint at the
beginning of the specified procedure. The breakpoint is set after the
procedure prologue, at the first executable line. If stack is not supplied,
the current procedure is assumed.

The third form is used to set a breakpoint at an arbitrary machine
instruction. exp may be any legal expression, especially one involving
procedure names or other text labels. If no expression is given, then the
address of the last thing you looked at with the /i or /I display mode
will be used. For example, printf+0x14 bi would set a break 20 bytes
into procedure printf.

NOTE: On targets that have multiple execution modes (that is, MIPS16 and
ARM's Thumb mode) the breakpoint type is automatically. determined
from symbolic information loaded from the program.cdb file.

See Execution Window on page 91 for information on setting, clearing, and
editing breakpoints with the mouse.

List Breakpoints

Syntax: B

Description: All breakpoints are listed. This is the same as the l b command. Each
breakpoint is identified by procedure name and relative line number, along
with its corresponding index number, enabled/disabled status, breakpoint
type, current pass count (if any), and command list.

Example: 0 E EXEC foo:12 -1 <t;i/D>

1 E EX16 bar:29 5 <Q;if *argv==1 {"Trashed argv again"}{c}>

Breakpoint type is one of EXEC (normal execution breakpoint), EX16
(MIPS16 or ARM-Thumb type breakpoint), and HARD (hardware based
breakpoint).

Delete Breakpoint

Syntax: D | {[number] d}

Description: This command deletes one or more breakpoints. The D command deletes
all breakpoints. The d command deletes a specific breakpoint identified
by the index number listed by the B command. If number is not supplied,

i

54 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
d will try to delete a breakpoint at the current line. If no breakpoint is
found, all current breakpoints will be listed.

If

Syntax: if exp {cmds} [{cmds}]

Description: Conditional command execution. If exp evaluates to a non-zero value, the
first group of commands will be executed. Otherwise, the second group, if
present, will be executed. This command is nest-able (that is, another if
command can appear in either command list). It is also useful in command
files, where the GOTO command can be used to conditionally alter the flow
of control.

Print Source

Syntax: [line] [p [exp]]
[+|-] [exp]
[line] {w|W} [exp]

Description: Display one or more lines of source code. These commands are seldom
used in windowing versions of EDB, since they display the source lines in
the Session Window and do not affect the Execution Window except for
moving the viewing point indicator.

The first form displays exp lines (default 1), starting from line line
(default is the current line). The viewing point is moved, with the new
current line becoming the last line displayed.

The second form moves the viewing point to exp (default 1) lines before (-)
or after (+) the current line, and displays the new current line.

The third form optionally moves the viewing point to line, and displays a
window (exp lines big) of text centered around the new current line. The
default for exp is 11 lines for w, and 22 lines for W. This command is used
most frequently without arguments to display some context around the
current viewing point, which is usually the current execution point.

Quiet

Syntax: Q

Description: EDB normally indicates when a break has been taken by displaying the
breakpoint (procedure:linenumber: source_line). If this command
appears as the first command in a breakpoint's command list, the normal
announcement is not made. This allows quiet checks of variables, and so
on to be made without cluttering up the screen.
EDB User’s Manual 0380-0162-10 Rev 05 55

3 Debugger Commands
Print String

Syntax: "any string"

Description: Prints the string. The string may have the standard C character escapes in
it. This command can be useful for commenting things in breakpoint
commands

Assertion Commands.

Assertions (a slight misnomer) are lists of commands that are executed
before every statement. This means that if there is even one active
assertion, the program will be automatically single- stepped. This means it
will run very slowly. A primary use for assertions is tracking down bugs
involving someone stepping on a global variable (or others). Some
examples will follow the command descriptions.

The following assertion commands are described below:

• Create Assertion

• Modify Assertion

• Exit Assertion

Create Assertion

Syntax: a cmds

Description: Create a new assertion with the given command list. Assertions, like
breakpoints, are assigned a reference number in the order they are created.
See the examples under Exit Assertion below.

Modify Assertion

Syntax: exp a {a|d|s}
A [a|s]

Description: The first form changes the current state of assertion number exp.
Depending on the letter following exp a, the assertion will be: activated
(a), deleted (d), or suspended (s). Suspended assertions continue to exist
but are not in use (that is, their command lists are not executed).

The second form changes the current state of the overall assertion
mechanism. Depending on the letter following A, the assertion mechanism
will be: toggled (no parameter), activated (a), or suspended (s). This is a
quick way to turn off assertions temporarily without having to suspend
each individual assertion.
56 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Exit Assertion

Syntax: exp x

Description: Force an end to assertion processing. If no expression is present, or if it
evaluates to 0, then exit immediately, otherwise the current assertion
finishes executing. If any assertion executes an x command, the program
will be stopped and the assertion doing the x will be identified.

Example: a if (foo!=$foo) {$foo=foo; foo/d; if (foo>9) {x}}
This command will create an assertion to display the value of some
global variable (foo) whenever it changes, and stop if it exceeds
some value. It uses a debugger special variable to keep track of the
old value of foo.

a L; if (foo > (bar-9)*10) {A; 1 x; c} {bar -= 10}
This assertion prints the line about to be executed, then checks the
condition. If it is false, bar is decremented by 10. If it is true,
assertions are suspended, assertion mode is ended, and the
program continues at normal speed. Without the non-zero number
before the x command, the c command would not have been
seen and the program execution would not have continued.

Record and Playback Commands
EDB contains a record and playback feature to help recreate program
states. This is particularly useful for bugs requiring long setups.

Although an attempt has been made to do things reasonably, it is possible
to fake out the recording mechanism. Be particularly careful about trying
to playback from a file currently open for recording or vice-versa. This may
cause unpredictable results.

The following record and playback commands are described below:

• Command Recording on page 58

• Output Recording on page 58

• Command Playback on page 58

• Set Quiet Mode on page 58

• Set Command Sub-System Mode on page 59

• File Read on page 59

• File Write on page 60

• Goto on page 62

• Shift / Unshift on page 62
EDB User’s Manual 0380-0162-10 Rev 05 57

3 Debugger Commands
Command Recording

Syntax: > [file|t|f|c]

Description: If no parameter is specified, report the current command and output
recording status. If file is given, set the command recording file to file
and activate recording. Otherwise turn command recording on (t) or off
(f), or close the current recording file (c). To avoid confusing (or even
recursive) results, any command line beginning with > or < will not be
placed in the current recording file. This can be overridden by simply
beginning the line with a space.

Output Recording

Syntax: >> [file|t|f|c]

Description: If no parameter is specified, report the current command and output
recording status. If file is given, set the Session Window output
recording file to file and activate recording. Otherwise turn output
recording on (t) or off (f), or close the current recording file (c).

Command Playback

Syntax: <[<] file

Description: Starts command playback from file file. If << is used, the
single-stepping feature of command playback is used (see the -Z N
command line option). When the end of the playback file is reached,
commands are again read from the console.

Command playback files can be nested up to 20 levels deep. When the end
of a nested file is reached, command execution resumes with the next
command in the calling file.

If you wish to pass arguments to a command file, you must use the FR C
command.

Set Quiet Mode

Syntax: {+|-}Q

Description: This command is used to enable (+) or disable (-) the Quiet mode of
command file playback. Normally, debugger prompts and commands
read from the command file are displayed just as they would be if the
commands were entered from the keyboard. But when Quiet mode is
active, the debugger does not display prompts and commands while
reading commands from a file. Note that Quiet mode is automatically
turned on while a command alias is being executed. When the alias
command is finished, the original state of Quiet mode is restored.
58 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Note that Quiet mode of command file playback can only be used when a
command file is read back via the FR command.

Set Command Sub-System Mode

Syntax: {+|-}{mon|edb}

Description: These commands are used to enable (+) or disable (-) a particular
command sub-system. They are most useful in command files that need to
ensure a particular mode of operation to allow seamless operations from
either command mode. For example a command file consisting of:

+mon
dw pc
-mon

will work from either command mode and restore the command mode that
was active with the command file was started.

File Read

Syntax: FR C file_name [p_value...]
FR M file_name [addr]
FR {I|RD|TD|TF|TS} file_name

Description: This command is used to read files of various types. The type of file is
specified by the first operand. The valid file type operands for a File Read
are described below:

file_name
is the name of the file to be read. If file_name does not
include an extension, the debugger will supply the default
file name extension. If no extension is desired, file_name
should end with a period (.), which will be removed before
opening the file.

addr The starting address where the memory image will be
loaded. It is not necessary that this address match the
starting address used to write the file. addr is optional on

Operand File type Default Extension

C Command file .cmd

M Memory binary image or S-Record file .mem

RD Register Definition file .rd

TD Trace Display file .td

TF Trace Format file .tf

TS Trace Specification file .ts
EDB User’s Manual 0380-0162-10 Rev 05 59

3 Debugger Commands
memory image files containing Motorola S-Records. If
given, addr specifies a load address relative to the addresses
in the S-Record file.

p_value An argument to be passed to the Command file. Each
p_value is an arbitrary string of text delimited by
white-space (blank or tab). When each line of the command
file is read in, it will be scanned for parameter strings of the
form $* or $n, where n is a one or two digit decimal
number. $0 will be replaced with the number of
arguments, $1 will be replaced with the text of the first
argument, $2 with the second, etc. The shift and
unshift commands can be used to change which argument
string parameter $1 actually refers to, making it possible to
process a variable number of arguments in a loop. $* will
be replaced with the entire list of arguments from the File
Read command. The replacement text can be pasted into a
larger token by using \ as a delimiter character. For
example, $1\text, my\$2\ident, temp\$3.

Note that for MIPS targets, you must use $$n instead of
just $n since $n conflicts with certain register names.

Note that command files may contain File Read commands
that execute other command files. Command file reads may
be nested up to 20 levels deep. If an FR C command is not
the last command of a multi-command line, the rest of that
command line will be executed after the contents of the
command file.

Remember that empty lines in a command file are
equivalent to hitting <Enter> at the debugger prompt. That
is, they may cause the previous command to be repeated if it
was a repeatable command.

When FR TS is used to read a trace specification, all pre-existing
conditions, events, states, and filters are first killed. But if FR C is used
instead, the new conditions, events, and states are added to the current
trace specification, overwriting when appropriate. FR TF does not kill
pre-existing trace formats, it just adds to them, overwriting when
appropriate.

File Write

Syntax: FW[O] {I|TD|TF|TS} file_name

FW[A|O] M file_name range

FW[A|O] {C|O} file_name

FW {C|O} {-|+}
60 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Description: This command is used to write files of various types. The type of file is
specified by the first operand. The valid file type operands for a File Read
are described below:

[A|O] Normally, if the file specified exists, you will be prompted
for permission to overwrite or (for command and output
files) append to it. To avoid that prompt, use the FWA
command to append without prompt or the FWO command
to overwrite without prompt.

file_name
is the path and filename of the file to be written, relative to
the current working directory. If file_name does not
include an extension, the debugger will supply the default
file name extension. If no extension is desired, file_name
should end with a period (.), which will be removed before
opening the file.

range specifies the region of memory (or block of registers) to be
written to the Memory image file.

{+|-} Once writing to a Command or Output file has been
initiated, output may be temporarily suspended with minus
(-) and later resumed with plus (+).

Doing a File Write to the Output (O) file type causes each line printed to the
console (including the echo of commands entered) to be logged into the
specified file. This allows a permanent record to be made of a debugging
session. Whereas the Command (C) file type records only the commands
entered, but not the prompts and responses from the debugger. This is a
convenient way to create script files that can be used to automate repetitive
command sequences or to quickly recreate an interrupted debugging
session.

The initialization file saves most debugger invocation options (such as
communication port and target endianness) as well as the current
configuration of the MC and OM commands. Memory image files contain
raw binary data uploaded from the target. They normally represent the
contents of some range of memory at the time they were created, but they
can also contain a dump of the processor's register contents. The file
contains no control information (such as the original address range written

Operand File type Default Extension

C Command file .cmd

M Memory image file .mem

O Output capture file .out

TD Trace Display file .td

TF Trace Format file .tf

TS Trace Specification file .ts
EDB User’s Manual 0380-0162-10 Rev 05 61

3 Debugger Commands
to the file), so a Memory file can be written from one location and later read
back into a different location. Writing a Trace Display file also suspends
tracing, resets the current trace control specification to state 0, and causes
any subsequent tracing to begin with a cleared timestamp and trace buffer.
If Execution Tracing mode (+te) is active, trace control is automatically
re-enabled when execution later resumes. But if Trace Always mode is
desired, it must be explicitly re-enabled with +t.

Goto

Syntax: goto label

Description: The goto command is used to change the order of command execution
when playing back commands from a command file. It causes the
command file reader to jump to the line following the specified label.
Labels are defined in the command file by a line of the form:

:label

where label is any valid identifier string. The colon does not have to be in
the first column of the line, but there must be no white space between the
colon and the label. goto commands may precede or follow the
corresponding label definition. Label definitions and goto commands
have no effect when reading commands from the console, but they will be
saved in a command output file if command logging is in effect.

Note that the goto command can only be used when reading command
files with the fr command, not the < command.

Shift / Unshift

Syntax: shift [number]
unshift [number|*]

Description: The shift and unshift commands change the correspondence between
the arguments supplied on an FR C filename command and the
parameter strings within the command file.

Normally, the first argument is substituted for $1, the second argument for
$2, and so forth. The shift command increments the argument number
that corresponds to each parameter number, effectively shifting the
argument array so that a given range of parameter numbers refer to a
higher range of arguments. The unshift command reverses this effect.

number is the number of arguments to shift or unshift.

* is valid only for unshift, and it restores the arguments so
that $1 again refers to the first argument.

NOTE: The $0 parameter is also affected by shifting: if there were
originally 10 arguments, after a shift 2 command $0 will be replaced

i

62 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
with 8. $* is not affected by shifting, it is always replaced with the entire
argument list.

Note that for MIPS targets, you must use $$n instead of just $n since $n
conflicts with certain register names.

The shift and unshift commands can only be used when reading
command files with the fr command, not the < command.

Example: mon

if ($0 < 2) { dv "Expected address and count\n"; goto done }
:loop

dw $1 L $2

shift 2

if ($0 >= 2) { goto loop }
:done

q

Argument shifting is very useful when you want to perform the same
series of actions repetitively on an unknown number of argument (or
groups of arguments). The previous command file displays the contents of
a series of ranges using MON commands. It expects an argument list of the
form:

addr count[addr count]...

History Commands
EDB has a powerful history mechanism via the Command Input toolbars in
the Session Window and Program I/O Window. EDB also supports an older
style history mechanism (shown below) that remembers the last 20
commands. Most users will find the new style history mechanism more
convenient to use.

The following history commands are described below:

• List History

• Execute History on page 64

• Edit History on page 64

List History

Syntax: {history|h}

Description: Displays the current history list (the 20 most recently entered commands).
Each command is preceded by a reference number.
EDB User’s Manual 0380-0162-10 Rev 05 63

3 Debugger Commands
Execute History

Syntax: #[#|number|string1] [string2]

Description: Re-executes a previous history command. If the first parameter (which
must not be separated from the first #) is not given, or is #, the last
command is re-executed. If number is given, the specified command is
re-executed. If string1 is given, the command that starts with string1 is
re-executed. In any case, if the second parameter, string2, is given, it is
appended to the command before it is re-executed.

Edit History

Syntax: %[%| number|string1] [string2]

Description: This command selects a history command just as with #, but it passes the
command to a simple line editor before executing it. Directions for its use
are available upon invocation.

Miscellaneous Commands
The following miscellaneous commands are described below:

• Again on page 65

• Shell on page 65

• Display Alias on page 65

• Display Configuration Options on page 65

• Enter Alias on page 66

• Enter Configuration Option on page 66

• Address Format on page 67

• Fix-It on page 68

• Indent (tab size) on page 68

• Info on page 68

• Kill Alias on page 68

• MON Subsystem on page 68

• Number Format on page 69

• Quit on page 69

• Source Directory on page 69

• v on page 69

• Yak (comment line) on page 70

• Toggle Case on page 70
64 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Again

Syntax: <CR>

<Ctrl-D>

Description: <CR> will attempt to repeat the last command, possibly with an
appropriate increment. <Ctrl-D> is similar, but will repeat the command 10
times. Neither form will have any effect if the previous command is not
obviously repeatable.

Shell

Syntax: ![command-line]

Description: Invokes an operating system command shell. If command-line is present,
it is executed and the shell will return immediately; otherwise, the shell
returns when exited (via the exit command on Unix and MS/DOS
systems, or logout on Vax/VMS systems).

Display Alias

Syntax: da [*|alias]

Description: The Display Alias command shows the name and replacement text for one
or all currently defined aliases. If the command is entered without a
parameter, all aliases are displayed.

* display all aliases. This is the default.

alias the name of a command alias defined with the EA
command.

See the description of the EA command for more information about
creating an alias.

Display Configuration Options

Syntax: do[v] [*|string|cfg_opt]

Description: This command displays the configuration options. If the command is
entered without parameters, all options are displayed. The v option
displays help text about the given option. If string is supplied, only those
cfg_opts with the same initial characters are displayed. For example, do
l* will display only those configuration options that begin with l. If * is
specified, all options will be displayed. This is the default.

Note that you can also see and edit EO/DO options via the Option Settings
dialog. (See Option Settings Dialog on page 102.)
EDB User’s Manual 0380-0162-10 Rev 05 65

3 Debugger Commands
Enter Alias

Syntax: ea alias cmd_list

Description: This command creates an alias (synonym) for a list of one or more
commands. It is normally used to create a short (one or more characters)
abbreviation for a longer command or sequence of commands that are
frequently needed.

alias identifier
the new command name that is being created or re-defined.

An identifier consists of alphanumeric characters plus
underscore (_) and dollar sign ($), and must start with an
alphabetic character or underscore (_). Alias names are not
case sensitive.

cmd_list command[;command]...
one or more debugger commands, separated by semicolons.
If the last command in cmd_list is not complete (missing
some parameters at the end) they must be provided when
the alias is used.

When a command is being processed, the debugger first checks to see if the
command name matches an existing alias name, ignoring alphabetic case.
If a match is found, the alias name is replaced by the text of cmd_list, and
the command is re-scanned. If a match is not found, the debugger checks
for built-in commands. This means that aliases can be used to re-define
existing built-in commands, and the alias replacement text can contain
other alias names. Recursive alias references are not supported, however.

If cmd_list includes an FR C file command, the command file will be
read in Quiet mode to provide the illusion that the alias name is a built-in
command.

Aliases can be displayed with the Display Alias command, and removed
with the Kill Alias command.

Example: EA DTS DC;DE;DS // display trace specification.

ea rc fr c // read command file without echo.

Enter Configuration Option

Syntax: eo cfg_opt = value

Description: This command provides a mechanism to configure the operation of the
debugger and emulator. The options available are dependent upon your
target environment. For a complete description of each option use the
Option Settings dialog or dov command to display the help information
available for each option.
66 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Wherever a cfg_opt is called for, either its full name or just its initials (as
an abbreviation) may be entered.

Note that you can also see and edit EO/DO options via the Option Settings
dialog. (See Option Settings Dialog on page 102.) Below are some of the more
generic options available.

Address Format

Syntax: f ["printf-style-format"]

Description: This command may be used to alter the default display format for address
expressions. printf-style-format is a conversion specification string as
defined by the C printf function. If there is no argument, this defaults to
%#lx, which prints the address in long hex. All addresses are treated as if
they are long, so you should handle all 4 bytes to get something
meaningful. This is for viewing memory addresses in decimal, octal, etc.

Full Name Initials Description Range Default

dp_color dc Color or black and white
display

off|on off

dp_color_output dco Display Output Color color1 green

dp_color_input dci Display Input Color color white

dp_color_prompt dcp Display Prompt Color color cyan

dp_color_standout dcs Display Standout Color color yellow

dp_color_backgnd dcb Display Background Color color2 black

dp_color_error_msg dcem Display Error Message Color color red

load_absolute_syms las Include absolute-valued
symbols in loads

off | on off

calling_convention cc Function Calling Convention o32 | n32 |
o64

o32

serial_speed ss Serial Communication Speed 0..7 on

edb_go_interactive_mode egim Go interactive (concurrent)
mode

off | on off

edit_callout ec EDB edit callout configuration string cw32 %f
-G%l

sym_delta sd Maximum offset in symbol+offset
address display

0..ffffffff ffff
EDB User’s Manual 0380-0162-10 Rev 05 67

3 Debugger Commands
Fix-It

Syntax: F

Description: Find and fix bug - just what you've been looking for! Actually, this is
CDB’s version of “joke of the day”.

Indent (tab size)

Syntax: i number

Description: Tab characters in the source file will align the text to 8 column boundaries
by default. This command can be used to change the tab stops to every
number column. In windowing versions of EDB the new setting will affect
the display of source lines in all windows, not just the Execution Window.
Note that this setting is saved in an EDB startup file. See the menu option
Save Layout for details. (See Execution Window on page 91 and Save Layout
Command on page 72.)

Info

Syntax: I

Description: Displays various information about the state of EDB.

Kill Alias

Syntax: KA *

KA alias

Description: The Kill Alias command deletes the name and replacement text for one or all
of the currently defined command aliases. Command aliases are created
with the Enter Alias command.

* Remove all aliases.

alias Remove just alias from the command alias list.

MON Subsystem

Syntax: mon

Description: This command invokes a command subsystem that provides a subset of
the commands described in the User's Manual for your target system
(Simulator, Emulator, etc.). This subsystem has its own help file, and
provides complete control of the trace control, profiling, and hardware
breakpoint features of EPI emulator's. The Quit command exits the MON
subsystem and returns to the standard EDB command interpreter.
68 0380-0162-10 Rev 05 EDB User’s Manual

Debugger Commands 3
Number Format

Syntax: n number

Description: This command can be used to alter the default number base (radix) used to
display integer expressions. The normal default is decimal (n 10). Note
that this setting is saved in an EDB startup file. See the menu option Save
Layout for details. (See Save Layout Command on page 72.)

Quit

Syntax: q

Description: Exits the EDB program. Before exiting, you are prompted to confirm what
you want to do. Answers to the prompt are y (Exit, the default), s (save
breakpoints, assertions, source file search paths, tab size, default radix, and
load option settings, then exit), or n (stay in EDB). If you select s, and the
program you are debugging is foo, the save file will be foo.rc. The
commands in this file will be executed automatically the next time you run
EDB to debug foo.

Source Directory

Syntax: u {string | ”string”}

Description: Adds the directory whose path name is given by string to the source file
search list. Alternate directories will be searched in the order given. If a
file is not found in the current directory, the alternate directories are
searched in order. To view the current directory list, use the l d
command. If the string includes spaces, string must be enclosed in
double quotes.

v

Syntax: v

Description: This command calls up an external editor supplying the current module
and line number as arguments. The editor and options supplied to the
editor are configured via an option configuration string. See the
edit_callout option in the Option Settings dialog for details on the setup
of the editor callout configuration string. (See Option Settings Dialog on
page 102.)
EDB User’s Manual 0380-0162-10 Rev 05 69

3 Debugger Commands
Yak (comment line)

Syntax: Y arbitrary_text

Description: This command echoes whatever text follows the Y to the screen. It can be
used to add comments to command files. The Print String command (see
Print String on page 56) can also be used for this, but the Y command
behaves a little differently. It is intended to be the only command on the
line, and the command file playback system will recognize it and not pause
after executing it even if the -ZN option is in effect.

Toggle Case

Syntax: Z

Description: This command toggles case sensitivity in source and symbol table searches.
This affects everything: file names, procedure names, variables, and string
searches. EDB starts out as case sensitive. The new case sensitivity setting
is displayed. The current setting is displayed by the Info command.
70 0380-0162-10 Rev 05 EDB User’s Manual

EDB User’s Manual 0380-0162-10 Rev 05
4
Menu and Window Reference
This chapter describes the EDB menus, windows, and dialog boxes. The
menus are described below, and the windows and dialogs are described in
Windows and Dialogs on page 86.

EDB Menus
EDB uses seven menus:

• File Menu

• Edit Menu on page 73

• View Menu on page 75

• Exec Menu on page 82

• Misc Menu on page 85

• Window Menu on page 85

• Help Menu on page 85

File Menu

The File menu offers the following commands:

Program to Debug Select Program to Open/Debug. Accelerator key:
<Ctrl-O>

Save Layout Save current window layout.

Restore Layout Restore window layout from save file.

Save Session Info Save program session data (breakpoints, etc.).

Recent File List Select Most Recently used Programs.

Exit Exit EDB.
71

4 Menu and Window Reference
Program to Debug Command

Use this command to select a program to open or debug. Programs must
be COFF or ELF files to be recognized. EDB also requires that a
program.cdb file exist for the given program. You can create this file by
running cdbtrans on the COFF or ELF executable file as follows:

cdbtrans program

If EDB cannot find the program.cdb file or finds that its date is earlier than
the COFF or ELF program files date, then EDB will run the cdbtrans
program for you.

After a valid selection is made EDB will look for a startup session file
associated with the program. The session file is normally in the same
directory as the program file and is named program.rc. For more
information on this file see Save Session Info Command on page 73.

Note that you cannot debug multiple programs at once. Selecting a new
program to debug will remove debug information on the previously
loaded program.

Shortcuts:

Toolbar:

Keys: <Ctrl+O>

Save Layout Command

Use this command to save the screen layout in the EDB startup file. The
file is normally created and kept in your Windows directory and is
composed of the full name of your program (edbice, edbsim, etc.) with
.ini tacked on the end (for example, edbxxx.ini). Note that besides just
screen layout, this file also contains your most recently used program list
and Memory/Watch Window expressions, status of the various fields in the
General Properties dialog (for example, Font type, tab size, display radix,
scrollbar settings, etc.), and color setup.

EDB also has an automatic save and restore layout at exit feature that can
be enabled or disabled via the General Properties dialog.

To restore a screen layout see the File menu command Restore Layout
Command below.

Restore Layout Command

Use this command to restore a previously saved screen layout. To save a
screen layout or for more details on the file content location see the File
menu command Save Layout Command above.
72 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Save Session Info Command

This command saves the current breakpoints, source file search path, and
assertions in the currently loaded program's session information file
program.rc. Session files are automatically restored (read) by EDB upon
selection of a program to debug. EDB will also prompt you upon exit to
save any session information to this file.

Note that program session files contain EDB/CDB commands and can be
edited via any text editor.

Recent File List Command

Use the numbers and filenames listed at the bottom of the File menu to
select the last four programs you debugged. Choose the number that
corresponds with the program you want to debug or open.

Exit Command

Use this command to end your EDB session. You can also use the Close
command on the application Control menu. If you have a program loaded,
EDB prompts you to save the session information (see Save Session Info
Command above) and exit (Yes), or simply exit (No), or cancel the exit
operation (Cancel).

Shortcuts:

Mouse: Double-click the application's Control menu button.

Keys: <Alt+F4>

Edit Menu

The Edit menu offers the following commands:

Undo Reverse previous editing operation. Accelerator
key: <Ctrl-Z>

Cut Deletes data from the document and moves it to the
clipboard. Accelerator key: <Ctrl-X>

Copy Copies data from the document to the clipboard.
Accelerator key: <Ctrl-C>

Paste Pastes data from the clipboard into the document.
Accelerator key: <Ctrl-V>

Select All Select the entire contents of the window. Note that this
operation is only valid for source display mode. Accelerator
key: <Ctrl-A>

Properties Bring up Properties dialog. Allows display and edit of
program configuration.
EDB User’s Manual 0380-0162-10 Rev 05 73

4 Menu and Window Reference
Undo Command

Use this command to reverse the last editing action, if possible. The name
of the command changes, depending on what the last action was. The
Undo command changes to Can't Undo on the menu if you cannot reverse
your last action. If the Undo option is grayed-out, then Undo is not
supported for the last operation.

Shortcuts:

Toolbar:

Keys: <Ctrl+Z> or <Alt-Backspace>

Cut Command

Use this command to remove the currently selected data from the
windows/control and put it on the clipboard. This command is
unavailable if there is no data currently selected or the window/control
does not support editing.

Cutting data to the clipboard replaces the contents previously stored there.

Shortcuts:

Toolbar:

Keys: <Ctrl+X>

Copy Command

Use this command to copy selected data onto the clipboard. This
command is unavailable if there is no data currently selected.

Copying data to the clipboard replaces the contents previously stored
there.

Shortcuts:

Toolbar:

Keys: <Ctrl+C>

Paste Command

Use this command to insert a copy of the clipboard contents at the insertion
point. This command is unavailable if the clipboard is empty.

Shortcuts:

Toolbar:

Keys: <Ctrl+V>
74 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Select All Command

Use this command to select the entire contents of a window. Note that
some windows (at times) may represent an extremely large data set, and
thus, full data selection is not supported for these cases.

Shortcuts:

Toolbar: none

Keys: <Ctrl-A>

Properties Command

Use this command to view or change the display and program properties.
Program properties are broken down into General Properties, Program
Properties (properties that relate to the program under debug), and Color
Properties. See Properties Dialog on page 108.

Shortcuts:

Toolbar: none

Keys: none

Most Windows Shortcut (right-click pop-up) menus have a
properties entry.

View Menu

The View menu offers the following commands:

Session View Session Window.

Program I/O Create/View Program Input/Output Window.

Execution View Execution Window.

Memory View Memory Window.

Watch View Data Watch Window.

Registers Create/View new Registers Window.

Call Stack View Call Stack Window.

ICE Trace (ICE targets only) View ICE Trace Window.

Profiler Data (ICE targets only) View Profiler Data Display Window.

RTOS View RTOS Window.

Breakpoints View and edit breakpoints.

Option Settings View and edit configuration option settings.

ICE Trace Spec (ICE targets only) View and edit ICE trace
specifications.

Profiler Setup (ICE targets only) View Profiler Setup dialog.
EDB User’s Manual 0380-0162-10 Rev 05 75

4 Menu and Window Reference
General Toolbar Show or hide the General toolbar.

Execution Toolbar Show or hide the Execution toolbar.

Context Toolbar Show or hide the Context toolbar.

Status Bar Show or hide the Status bar.

Session Command

Use this command to open or view the Session Window, shown in Session
Window on page 114. The toolbar allows you to enter commands and recall
previous commands.

Shortcuts:

Toolbar:

Keys: none

Program I/O Command

Use this command to open or view the debugger's Program Input/Output
Window, shown in Program Input/Output Window on page 107. Input to
program user input requests can be entered via this window's toolbar input
box.

Shortcuts:

Toolbar:

Keys: none

Execution Command

Use this command to open or view the Execution Window. See Execution
Window on page 91 for more details.

Shortcuts:

Toolbar: none

Keys: none

Memory Command

Use this command to open or view the Memory Window. The window
provides dumps (in various formats) of memory at a specified address/
expression. See Memory Window on page 99 for more details.

Shortcuts:

Toolbar:

Keys: none
76 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Watch Command

Use this command to open or view the variable Watch Window. See Watch
Window on page 115 for more details.

Shortcuts:

Toolbar:

Keys: none

Register Command

Use this command to open or view the Register Window. See Register
Window on page 112 for more details.

Shortcuts:

Toolbar:

Keys: none

Call Stack Command

Use this command to open or view the Call Stack Window. See Call Stack
Window on page 90 for more details.

Shortcuts:

Toolbar:

Keys: none

ICE Trace Command

Use this command to open or view the ICE Trace Window. See ICE Trace
Display Window on page 96 for more details.

Shortcuts:

Toolbar:

Keys: none

Profiler Data Command (ICE targets only)

Use this command to open or view the Profiler Data window. This menu
item is only available if you are using a profiler equipped EPI ICE. See
Profiler Data Window on page 103 for more details.

Shortcuts:

Toolbar:

Keys: none
EDB User’s Manual 0380-0162-10 Rev 05 77

4 Menu and Window Reference
RTOS Command

Use this command to open or view the RTOS Object Browser window. See
RTOS Window on page 113 for more information.

Shortcuts:

Toolbar:

Keys: none

Breakpoints Command

Use this command to open or view the Breakpoints Dialog. Breakpoints can
be added, deleted, and modified via this dialog box. See Break Points Dialog
on page 86 for more information.

Shortcuts:

Toolbar: none

Keys: none

Option Settings Command

Use this command to open or view the Option Settings dialog. Breakpoints
can be added, deleted, and modified via this dialog box. See Option Settings
Dialog on page 102 for more information.

Shortcuts:

Toolbar:

Keys: none

ICE Trace Spec Command (ICE targets only)

Use this command to open or view the Trace Specification dialog. Trace
specifications can be viewed, edited, parsed, and downloaded via this
dialog box. See ICE Trace Specification Dialog (ICE targets only) on page 98 for
more information.

Shortcuts:

Toolbar:

Keys: none

Profiler Setup Command (ICE targets only)

Use this command to open or view the Profiler Setup dialog. This menu
item is only available if you are using a profiler equipped EPI ICE. See
Profiler Setup Dialog on page 105 for more information.

Shortcuts:

Toolbar: none
78 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Keys: none

General Toolbar Command

Use this command to display or hide the General toolbar, which includes
buttons for many commands in EDB, such as Program to Debug, Open
Windows, Copy, etc. A check mark appears next to this menu item when the
General toolbar is currently displayed.

Many of the View menu items are also available from the General toolbar,
shown below.

The General toolbar is displayed across the top of the application window,
below the menu bar, and provides quick mouse access to many operations
and tools used in EDB. To hide or display the General toolbar, choose
General toolbar from the View menu <Alt, V, G>.

Click To

 Program to Debug/Open. EDB displays the Open dialog
box, in which you can locate and open the desired COFF or
ELF program file.

 Remove selected data from the document and store it on the
clipboard.

 Copy the selection to the clipboard.

 Insert the contents of the clipboard at the insertion point.

 View Session Input/Output Window.

 View Program Input/Output Window.

 View/Edit variable Watch Window.

 View Call Stack Window.

 View ICE Trace Window.

 View ICE Profiler Data Window.

 View new Memory Window.

 View new Register Window.

 View/Edit Option Settings dialog.

 View ICE Trace Specification dialog.

 Toggle ICE Trace Execution mode on/off.

 Toggle ICE Trace All mode on/off.

 Context sensitive help.
EDB User’s Manual 0380-0162-10 Rev 05 79

4 Menu and Window Reference
Execution Toolbar Command

Use this command to display and hide the Execution toolbar, which
includes buttons for some of the most common execution related
commands in EDB. A check mark appears next to this menu item when the
Execution toolbar is currently displayed.

Many of the View menu items are also available from the General toolbar.
The Execution Toolbar is shown below:

The execution toolbar is displayed across the top of the application
window, below the menu bar, and provides quick mouse access to many
execution operations used in EDB. To hide or display the General toolbar,
choose Execution toolbar from the View menu <Alt, V, T>. Note that the
Properties Dialog on page 108 contains a check box item to view this toolbar
with or without text labels.

Click To

 Restart Program. See Restart Command on page 82.

 Download program data to target. See Load Command on
page 82.

 Go (start program execution from current location). You
may also see this as Go(i). This alternate form means
interactive Go mode is set. For more details see Go or Go
Interactive Command on page 83.

 Stop program execution. See Stop Command on page 83.

 Source level step over. See Source Step Over Command on
page 83.

 Source level step/step into. See Source Step Into Command on
page 84.

 Source level step out of function. See Source Step Out
Command on page 84.

 Run to cursor location. See Run to Cursor Command on
page 84.

 Instruction level step over. See Instruction Step Over
Command on page 85.

 Instruction level step/step into. See Instruction Step Into
Command on page 84.

 Snap to home location in current window. The home
location can have different meanings for different windows.
For the Execution Window, Snap moves the global context
view point to the execution point and positions the window
at this location. Most other windows move the window
viewpoint to the top of the window data.
80 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Context Toolbar Command

The Context toolbar is a specialized toolbar designed to display the current
global (default) processor context and allow it to be changed. The execution
context is identified with a * in front of the context name. The drop down
combo box labeled Default Context provides this functionality and is the
only element in the toolbar. The functionality is analogous to MON’s vc
command.

In general, the setting of the global view context affects all the windows.
Things like general registers, call stacks, local and file scope variables,
global variables (if multiple programs involved), etc. Some windows have
override settings that allow them to be fixed to a particular context.

To hide or display the Context toolbar, choose Context Toolbar from the View
menu <Alt, V, X>.

NOTE: This specialized toolbar is available only if you have installed an
appropriate RTOS_DLL configured for your RTOS or with selected
processors that support multiple CPU contexts and/or execution units.
Lexra’s NetVortex chip is an example of a chip with multiple CPU contexts.

Status Bar Command

Use this command to display or hide the Status bar, which describes the
action to be executed by the selected menu item or depressed toolbar
button, line/column data and keyboard insert/over-type state. A check
mark appears next to the menu item when the Status bar is displayed.

The Status Bar is shown below:

The status bar is displayed at the bottom of the EDB Window. To display or
hide the Status bar, use the Status bar command in the View menu.

The left area of the status bar describes actions of menu items as you use
the arrow keys to navigate through menus. This area similarly shows
messages that describe the actions of toolbar buttons as you depress them,
before releasing them. If after viewing the description of the toolbar button
command you do not want to execute the command, then release the
mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate line and column information (if
applicable) and shows which of the following keys are latched down:

Indicator Description
EDB User’s Manual 0380-0162-10 Rev 05 81

4 Menu and Window Reference
OVR Status of Insert/Overtype mode (default is off, or
insert mode)

Exec Menu

The Exec menu offers the following commands, which enable you to
control the execution of your program in various ways:

Restart Restart program.

Load Load/Reload program.

Verify Load Verify downloaded program data matches
executable file data.

Go Start program execution. Accelerator key: <F5>

Stop Stop execution. Accelerator key: <Ctrl-Break>

Source Step Over Source level step over. Accelerator key: <F10>

Source Step Into Source level step Into. Accelerator key: <F8>

Source Step Out Source level step out.

Run To Cursor Go until execution point is at line with cursor.

Instr Step Into Instruction level step into. Accelerator key: <F7>

Instr Step Over Instruction level step over. Accelerator key: <F6>

Restart Command

Kills the current process and prepares to restart execution. This is the same
as clicking on in the Execution Window, or typing K in the Session
Window. The program will be downloaded when you begin execution
with your next Go or Step operation, unless downloading is suppressed
with the -z command line option or by adjusting the Section Load option
in the Properties dialog (see Properties Dialog on page 108).

Shortcuts:

Toolbar:

Keys: none

Load Command

Downloads the target program. Starts or resumes full speed program
execution. This is the same as clicking on in the Execution Window, or
typing lf in the Session Window.

Shortcuts:

Toolbar:

Keys: none
82 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Verify Load Command

The section types previously downloaded to the target are uploaded and
checked against the original COFF or ELF files. The specific section types
verified can be seen or adjusted via the Program Options dialog box.

Shortcuts:

Toolbar: none

Keys: none

Go or Go Interactive Command

Start or resume full speed program execution. This is the same as clicking
on in the Execution Window, or typing either c or r in the Session
Window. For interactive mode the button icon is and the commands
are ci or ri.

Some of EPI’s target execution vehicles support what we call Interactive Go
mode. This mode is also referred to as concurrent target debug mode. When
active, this mode allows usage of the various EDB data windows (like the
Memory, Watch, and Trace) while a target program is executing. The state of
this mode is control via the EO option edb_go_interactive_mode. See
the Option Settings Dialog on page 102 or the EO command description
(Enter Configuration Option on page 66) for more details. Note that the
menu name and Execution button's Go icon change slightly with the
changing of this option.

Shortcuts:

Toolbar: or

Keys: <F5>

Stop Command

Stops target execution. Choosing this menu item is the same as typing
<Ctrl-C>, or clicking on the button in the Execution Window. This
menu item can also be used to stop the execution of certain EDB and MON
subsystem commands such as loading a file, doing a verify load,
displaying memory, and doing a memory test.

Shortcuts:

Toolbar:

Keys: <Ctrl-Break>

Source Step Over Command

High-level language single-step (steps one source level instruction),
stepping over any procedure calls. This is the same as clicking on in
the Execution Window, or typing S in the Session Window.
EDB User’s Manual 0380-0162-10 Rev 05 83

4 Menu and Window Reference
Shortcuts:

Toolbar:

Keys: <F10>

Source Step Into Command

High-level language single-step, stepping into any procedure calls. This is
the same as clicking on in the Execution Window or typing s in the
Session Window.

Shortcuts:

Toolbar:

Keys: <F8>

Source Step Out Command

Resume program execution, stopping when the currently executing
procedure returns to its caller. This is the same as clicking on in the
Execution Window or typing the command cU in the Session Window.

Shortcuts:

Toolbar:

Keys: none

Run to Cursor Command

Start or resume program execution until we reach the line that cursor is
currently on. This is the same as clicking on in the Execution Window
or typing c into the Session Window’s command line. If Interactive mode
is set a ci is done. Note that, if the menu item and button are grayed-out,
the cursor is not on an executable line.

Shortcuts:

Toolbar:

Keys: none

Instruction Step Into Command

Machine-level single-step, stepping into any procedure calls. This is the
same as clicking on in the Execution Window, or typing si in the
Session Window.

Shortcuts:

Toolbar:

Keys: <F7>
84 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Instruction Step Over Command

Machine-level step over (steps one machine level instruction), stepping
over any procedure calls. This is the same as clicking on in the
Execution Window, or typing Si in the Session Window.

Shortcuts:

Toolbar:

Keys: <F6>

Misc Menu

The Misc menu offers the following commands:

Refresh Window Data Refreshes (and reloads from target if needed)
the data display within the window.

Window Menu

The Window menu offers the following commands, which enable you to
arrange multiple views of multiple documents in the application window:

Cascade Arranges open windows in an overlapped fashion.

Tile Arranges open windows in non-overlapped tiles.

Arrange Icons Arranges icons of minimized windows at the bottom
of the main window.

Split Split the active window into panes. You can then use
the mouse or the keyboard arrows to move the
splitter bars. When you are finished, press the
mouse button or enter to leave the splitter bars in
their new location. Pressing escape keeps the splitter
bars in their original location. If this menu item is
grayed-out, the window does not support splitting.

Window 1, 2, ... Go to the specified window. EDB displays a list of
currently open document windows at the bottom of
the Window menu. A check mark appears in front of
the document name of the active window.

Help Menu

The Help menu offers the following commands, which provide you
assistance with this application:

Help Topics Offers you an index to topics on which you can get
help.

About Displays the version number and copyright
information of this application.
EDB User’s Manual 0380-0162-10 Rev 05 85

4 Menu and Window Reference
Windows and Dialogs
This section describes all windows and dialogs in alphabetical order.

• Break Points Dialog on page 86

• Call Stack Window on page 90

• Execution Window on page 91

• ICE Trace Display Window on page 96

• ICE Trace Specification Dialog (ICE targets only) on page 98

• Memory Window on page 99

• Option Settings Dialog on page 102

• Profiler Data Window on page 103

• Profiler Setup Dialog on page 105

• Program Input/Output Window on page 107

• Register Window on page 112

• RTOS Window on page 113

• Session Window on page 114

• Watch Window on page 115

Break Points Dialog

Breakpoints can be added, deleted, and modified via the dialog below.

The Breakpoints Listbox

The scrollable listbox within the dialog allows you to view, select, and
modify all your breakpoints. Selection is performed via standard listbox
mouse and key actions. Breakpoints with their number field highlighted
(or grayed) are in the selected state. A left click in the checkbox column not
only does the standard row (breakpoint) selection, but also toggles the
breakpoint enable/disable state (the checkbox). A left double-click does a
86 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
hyper-link (moves the execution windows view pointer to the breakpoint
line). A right-click brings up the short-cut menu which simply gives access
to many of the buttons available within the dialog. It also provides another
way to do a hyper-link.

 This status box shows the enabled/disabled state of the
breakpoint. Clicking on the box will toggle the state. A
check indicates an enabled breakpoint.

Number The ID number of the breakpoint. Numbers are assigned
automatically as breakpoints are created. The breakpoint
number can be used in the command line interface to delete
the breakpoint by typing number d in the Session Window.
In addition to the number, the check box to the left of the
number shows the enable disable state of each breakpoint.
A checked box indicates the enabled state.

Type The type of breakpoint. Breakpoints can be one of six types:
INST, INST16, HARD, READ, WRITE, R/W. INST identifies a
normal instruction level breakpoint. INST16 identifies an
alternate instruction set form of a normal instruction
breakpoint (for example, MIPS16 and ARM’s Thumb mode).
HARD identifies a hardware level instruction breakpoint
(useful for setting instruction breakpoints in ROM areas).
READ, WRITE, and R/W identify data access breaks.
Depending on the capabilities of your hardware, data access
breakpoints can be qualified with various options available
in the data access tab. Note that data access options may
also be valid for HARD type breakpoints.

Pass Count
The breakpoint pass count is the number of times the
breakpoint is hit before the debugger will stop execution (by
default this number is the initial pass count). The Initial Pass
Count edit box will show the reload pass count of the
selected breakpoint (see Edit boxes below).

Breakpoint location
The address of the breakpoint, usually expressed by the
function name and line number. Breakpoints can also be set
at arbitrary locations by specifying the address with an
expression.

The Edit Boxes

The Edit boxes display more detailed information on the selected
breakpoint and allow that information to be changed. If more than one
breakpoint is selected then these boxes are disabled. Upon changing any
data in these boxes, the Apply and Cancel buttons will enable you to make
permanent changes or discard them.

Break Type This drop down list box shows the current
breakpoint type and allows selection of other
EDB User’s Manual 0380-0162-10 Rev 05 87

4 Menu and Window Reference
possible breakpoint types. Available breakpoints are
Inst (Software), Inst16 (software), Inst
(Hardware), Data Read, Data Write, and Data
Read/Write. Note that this closely matches the
types displayed in the type column of the breakpoint
list. The list abbreviates the names leaving off the
word Data and changing Read/Write to R/W.

Location/Addr This closely resembles the Location/Addr value in the
list box, but matches the syntax required for editing.
You can use this box to change the breakpoint
location.

The Buttons

OK Accepts any changes that have not been applied (via
the Apply button) and closes the dialog.

New Selecting this button adds a new breakpoint to the
list. Focus is changed to Location/Addr edit box,
allowing you to enter the breakpoint location. When
you are done specifying the breakpoint data, click
the Apply button to make it permanent.

Apply Accepts the breakpoints new or changed data as
permanent.

Cancel Cancels a breakpoint edit or new operation.

Delete Deletes the selected breakpoint(s).

Delete All Deletes all the breakpoints (selected or not).

Enable Enables the selected breakpoint(s).

Enable All Enables all the breakpoints.

Disable Disables the selected breakpoint(s).

Advanced Tab Box

This tab box provides access to more advanced breakpoint features such as
pass counts and conditions, and a command list.

Condition You can make the current breakpoint conditional by
entering an arbitrary expression in the Breakpoint
Condition input box. All variables used in the
condition must be active at the breakpoint location.
88 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
NOTE: If the breakpoint is conditional and has a pass
count, the conditions will be evaluated first, and if
the conditions are true then the pass count will be
decremented and checked.

Command List This box allows you to add commands that are
automatically executed upon hitting the breakpoint.
Multiple commands can be entered by separating
them with a semi-colon (;).

ASID This box allows you to add an ASID qualifier.
Typically, the ASID field is only available for targets
that have dynamically mapped memory (TLBs).
NOTE: For target support CPU contexts, this field can
be used to give your breakpoint a context
qualification (enter a CPU context number).

Thread This list box allows you to qualify (or un-qualify) a
breakpoint as specific to a particular active thread.
Such a qualified breakpoint will only stop the
running program if the specified thread is active.
Such qualification is very useful for setting
breakpoints on RTOS interface functions or
applications that have multiple threads executing
the same code. Since, thread data is not generally
available until after the RTOS and applications are
initialized, thread qualifications must be entered
after such initialization. Also, since breakpoint data
saved between debug sessions is restored long
before application initialization, such qualifications
are lost between EDB sessions.

Initial Pass Count Pass counts allow you to specify how many times
the breakpoint location must be executed before the
program is actually halted. Pass shows the current
status of the pass counter, that is how many more
times the breakpoint will be reached before it is hit.
Initial Pass Count is the starting pass count value
that is reloaded into Pass automatically when the
breakpoint is finally hit.

Data Qualifiers Tab Box

This tab box provides access to data breakpoint qualifiers. Items showed
grayed out are not available in your debug environment.
EDB User’s Manual 0380-0162-10 Rev 05 89

4 Menu and Window Reference
Size Typically the default size of Unsized is best. Unsized
simply means break on any access to the memory
associated with this address. Note that for many
systems this is the only choice available. Other
possible choices are BYTE, HALF WORD, WORD and
DOUBLE WORD. Specifying one of these sizes limits
the break to only access the specified size.

Addr Mask This field allows the supplied Location/Addr to be
masked, which is useful for breaking on ranges and/
or multiple memory segments (high address
masking). The default value for this field is
0xffffffff.ffffffff.

Addr End This works in conjunction with your Location/Addr to
provide a range of addresses to break on.

Value The value to match before the break hits.

Value Mask This field allows the supplied Value to be masked,
which is useful for breaking on interesting ranges of
values (like odd numbers, etc). The default value for
this field is 0xffffffff.ffffffff.

Value End This works in conjunction with the Value field to
provide a range of values to break on.

Bus Address Checking this box identifies the Location/Addr as a
bus address. Normally the Location/Addr field is
treated as a user level (mapped or virtual) address.

Trace Point Checking this box changes the break point into a
trace point. A trace point does not stop the target.
Instead it triggers the processors trace trigger
features. Note that because of this some breakpoints
fields are not meaningful and appear disabled when
trace point is checked. Please consult your target
documentation for more information on your
target’s trace trigger feature.

Call Stack Window

The Call Stack Window shows the current call stack, identifying function
calls, parameters, source files/lines, and optionally local variables. One of
the most used features of the Call Stack Window is Hyper-Linking.
Right-clicking in the far left column of this window causes the Execution
90 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Window to change context to the current execution point within the
referenced (clicked-on) function. An example of the Call Stack Window is
shown below:

Call Stack Toolbar: Note that this toolbar defaults to off if no context
data is available. See the Context Input Box
description below for details.

Context Input Box: Allows you to override the default context
configured via the global Context toolbar. The
context setting can affect how the expression
evaluates, if the expression references any context
relevant data. Note that this input box is only
available if you are using a CPU that supports CPU
contexts, or you have an appropriate
RTOS_API.DLL.

Locals Button: Optionally, the Calls Windows can be configured to
display each function’s local variables as well. This
feature is a toggle via the Locals button or the
window’s Shortcut (right-click) menu. A check mark
next to the menu item indicates that displaying local
variables is on.

Short-Cut Menu

Hyper-Linking: Right-clicking in the far left column of this window
causes the Execution Window to change context to
the current execution point within the referenced
function. This feature can also be used from the
Shortcut menu. (For a definition of hyper-linking, see
Context View Point on page 27)

Show Locals: See Locals Button above.

Execution Window

The Execution Window lets you watch your code as you step through
execution, set and modify breakpoints, and examine data variables. It can
display source code only, mixed source and assembly code, or pure
assembly code.

In Source mode, the Execution Window looks like:
EDB User’s Manual 0380-0162-10 Rev 05 91

4 Menu and Window Reference
 Identifies the execution point. It can also look like if the
execution point is not exactly at the first address of code for
this line.

 Identifies the context point. A context point is conceptually
the line at which the debugger is currently looking. Any
variable display references, etc., will use this line as a basis.

 Is a combined execution and context point. It can also look
like if the execution point is not exactly at the first
address of code for this line.

 Identifies a line as having a breakpoint inserted. If the
breakpoint looks like , then it is a disabled breakpoint.
Note that breakpoints will still show up even if they do not
reside exactly on the first line of machine code for the source
line.

 Identifies a line as having machine code associated with it.
Only lines with code will accept breakpoints.

Execution Window Toolbar Buttons

 Inserts or deletes an existing breakpoint on the current
source or disassembly line.

 Removes all existing breakpoints.

 Brings up the Breakpoint Edit dialog.

 Sets the Execution Window Display mode to Source. If no
source module is available the button still sets, but the mode
will remain disassembled.

 Sets the Execution Window Display mode to Mixed Source
and Disassembled. If no source module is available the
button still sets, but the mode will remain Disassembled.

 Sets the Execution Window Display mode to Disassembled.

 Calls up an external editor supplying the current module
and line number as arguments. The editor and options
supplied to the editor are configured via an option
92 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
configuration string. See the edit_callout option in the
Option Settings Dialog on page 102 for details on the setup of
the editor callout configuration string.

Viewing Modes
Three viewing modes are supported: Source, Mixed, and
Disassembled. The viewing mode is controlled by buttons
on the window's toolbar, the Shortcut menu, or by hitting
the <F3> accelerator key. Note the EDB will auto-switch to
the disassembled mode if the viewing point does not have
any source code debug information.

Instruction View Mode
These buttons control the Execution Window's View mode.
The first is Source mode, which displays only high-level
source lines from your source code. The second is Mixed
mode, which displays both source instructions and the
associated machine instructions directly underneath each
source line. The third is Disassembled mode, in which only
machine instructions are shown.

Short-Cut Menus
The Shortcut menu (right-click) has three operating modes:
Left Column Breakpoints menu, Code menu, and the Selected
Item menu. A right-click in the breakpoint column brings
up the Breakpoint menu. A right-click on selected text
brings up the Selected Item menu, otherwise the normal
Code menu comes up. (See Execution Window Shortcut Menus
below.)

Execution Toolbar
Although not part of the Execution Window, the Execution
toolbar relates directly to contents of this window. See
Execution Toolbar Command on page 80 for more details.

Execution Window Shortcut Menus

Breakpoint ShortCut Menu

This menu is entered by a right-click on the far left side of the Execution
Window. Note that the mouse cursor will change to a breakpoint circle
when you are in the right area. It has the following options:

Insert/Delete Breakpoint
Insert a breakpoint at the current line. If a
breakpoint already exists here then it is deleted.
Breakpoints can only be inserted on lines marked as
having code.

Enable/Disable Breakpoint
Toggle the enable/disabled state of the breakpoint
on the current line.
EDB User’s Manual 0380-0162-10 Rev 05 93

4 Menu and Window Reference
Edit Breakpoints Brings up the Edit Breakpoints dialog. (See Break
Points Dialog on page 86.)

Selected Text Shortcut Menu

This menu is entered by a right-click within some selected text. It has the
following options:

Copy Copy selection to the clipboard. (See Copy Command
on page 74.) Accelerator key: <Ctrl-C>

Goto Function Definition
If the selected item matches a known function the
Execution Window context will move to that
function.

Add Watch Add selection to Watch Window. Note that you can
also drag the selection to the Watch Window.

Evaluate Selection Evaluates the selection by copying it to the Session
Window command input.

Default Shortcut Menu

This menu is entered by a right-click when none of the above conditions
apply. It has the following options:

Copy Copy selection to the clipboard. Accelerator key:
<Ctrl-C>

Select All Selects all the text in the window. Note that this
operation is only valid in Source mode. Accelerator
key: <Ctrl-A>

Edit Source Calls an external editor passing the current source
module name and line number as arguments. See
the Allows for and Brings up the Breakpoint sub-menu
items. See the Breakpoint Shortcut Menu above. See
the edit_callout option in the Option Settings
Dialog on page 102 for details on the setup of the
editor callout configuration string.

Breakpoint Brings up the Breakpoint sub-menu items. See the
Breakpoint Shortcut menu above.

Select Function Puts input focus to the Enter Function drop-down
box on the Execution Window toolbar. Accelerator
key: <Ctrl-F>. Note that if the Select Box mode is set
to modules then you will only see module names,
not functions.

Select Box Mode Selects mode of Execution toolbar input box. See
Execution Toolbar Select Box Mode below.

Run to Cursor Continues execution until it encounters the code for
the line with the cursor.
94 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Set Context to Cursor
Sets the debugger's context viewpoint to the current
cursor line. This can affect the context of variables
displayed in various EDB Windows. Use the Snap
button to set the context back to the execution point.

Source Mode Selects Source mode as the default display mode for
code.

Mixed Mode Selects Mixed Source/Disassembled mode as the
default display mode for code.

Disassembled Mode
Selects Disassembled mode as the default display
mode for code.

Cycle Mode Cycles the display mode between Source, Mixed, and
Disassembled. Accelerator key: <F3>

Code Coloring Toggles the state of code coloring to be on or off. The
default is on.

Split Splits the execution into multiple views.

Toolbar Toggle the hidden/displayed state of the Execution
Window toolbar.

Properties Bring up Properties dialog. Allows display and edit
of program configuration. See Properties Dialog on
page 108.

Execution Toolbar Select Box Mode

This menu is a pop-up under the normal Execution Window Shortcut menu.
It has the following options:

Debug Functions Shows only functions compiled with debug
information on (compiler's -g flag).

All Functions Shows all functions in the program.

Debug Modules Shows only modules compiled with debug
information (compiler's -g flag).
EDB User’s Manual 0380-0162-10 Rev 05 95

4 Menu and Window Reference
ICE Trace Display Window

The Trace Display Window provides convenient scrollable access to any
captured trace data in your emulator (ICE versions of EDB only).

The following example of the Trace Display Window shows disassembled
instructions:

The text in the title bar includes the total number of captured frames
(cycles) of trace data, the current display mode, and whether filtering is in
effect.

The column header displays the field name and polarity. Both Color (white
vs. black) and the normal negation over bar shows the active high or low
state of the signal. Note that many signals may be grouped within one
column field. This grouping is loosely based on MON's ETF command
formatting information. A column break is inserted if a field is horizontal,
has any space separation or inverse color change. Note that the time stamp
header also functions as a mode display button. Clicking on the Time
Stamp Header button cycles the display between absolute, relative, and
delta. Note that other header buttons have any operation effect.

The Trace Display Toolbar buttons allow you to update the trace data,
specify the type and format of trace data displayed, and enable/disable
filtering.

Refresh Button
This button causes EDB to upload fresh Trace data from the
emulator. This is necessary if you leave the Trace Display
Window open while you resume execution of your target
program. When execution next stops, the emulator's Trace
Data buffer will be full of new information but the Trace
Display Window will still be showing the data captured
earlier.

Raw Displays the captured trace data in a raw binary format. All
of the processor's busses and control signals can be seen.
The signals displayed and their grouping can be changed
with the ETF (Enter Trace Format) MON command.
96 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Note that no bus information is available when using the
HP Software Probe.

Instr Displays valid instruction accesses in disassembled form. If
the address of an instruction corresponds to a source line,
the source line will also be displayed.

Data Displays valid data accesses in a formatted form. (Not
available with HP Software Probe.)

Mixed Combination of Instr and Data modes. (Not available with
HP Software Probe.)

Filtered You can use filtering to reduce the number of frames
displayed to those that match a specified list of conditions.
This can be useful when trying to find a particular event or
access in the trace data. You create the filter with the EF
(Enter Filter) MON command, specifying one or more of
your Trace Control Conditions. If your Trace Control
Specification does not include the condition you need, you
can create a new condition just for the filter.

Note that if you do not have a filter specification defined
then the Filter button is displayed in Disabled mode.

The Shortcut menu provides access to all the buttons above (allowing you
to turn off the toolbar and save some screen space). You can also configure
the time stamp display state, mode, and do hyper-linking.

Display Time Stamp
This menu item toggles the state of the time stamp
display. If checked, the time stamp is displayed after
the frame number. Note that this mode mirrors the
mode used by MON’s dt command and can also be
configured via MON’s ETF command. The time
stamp field on/off state defaults to on for RAW
mode and off for formatted modes.

Time Stamp Mode This menu item brings up a sub-menu with the Time
Stamp Display Mode options. Note that these options
can also be configured by clicking on the time stamp
header field. By default, a time stamp is only
displayed in RAW display mode. This can be
configured via MON’s ETF command and the
shortcut menu toggle Display Time Stamp.

HyperLink Whenever source code is intermixed in the trace
data, the Shortcut (right-click) menu will contain a
hyper-link option which if activated will cause the
Execution Window to move its context point and
display the referenced line in code.
EDB User’s Manual 0380-0162-10 Rev 05 97

4 Menu and Window Reference
ICE Trace Specification Dialog (ICE targets only)

Trace specifications can be viewed, edited, parsed, and downloaded via
this dialog box. Note that this feature is not available when using the HP
Software Probe.

The Edit Window

This Edit Window allows you to view and edit trace specification. It does
not, by default, display the active trace specification unless you have
previously used the Apply button to parse (and thereby, make active) this
specification. You can also use the Extract button to fill the Edit Window
with the active trace specification (see the Extract button description
below). This window supports standard Cut, Copy, and Paste operations.

The Buttons

Open Brings up an open file dialog. Trace specification files have
the default file extension .ts.

Save Saves the active trace specification using its current file
name (displayed in the dialog header). This button is
grayed-out if the current specification is not named, has not
changed, or is empty.

SaveAs Brings up the standard Windows SaveAs dialog. Trace
Specification files have a default extension of .ts. Leaving
off the extension when naming the file will cause the dialog
to append this extension when saving.

Extract Clears any trace specification in the Edit Window, extracts
the currently active trace specification, and inserts it into the
Edit Window. If no active trace specification exists, then the
98 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
default trace specification is used. Please note that hitting
the Apply button following this extract operation will cause
you to lose any comments and non-default formatting that
you may have in your specification.

Verify Verifies the debugger's active trace specification. Note that
this is not necessarily the trace specification that is in the
Edit Window. Instead it operates on the active trace
specification. You can use the Apply button to parse and
make active your current Edit Window specification. Verify
will then operate on this specification. Note that any
verification errors appear in the Session Window.

Apply Causes the trace specification in the Edit Window to be
parsed and readied for download to the ICE. This process
also makes this trace specification the active trace
specification. Note that any parsing errors will appear in
the Session Window.

Ok Does the same operation as the Apply button above and also
closes the dialog. Note that your trace specification is saved
such that reopening this dialog brings back your last
specification. Closing EDB will cause any unsaved trace
edits to be lost.

Memory Window

The Memory Window lets you examine and modify your target and
program memory in a variety of formats. You can use multiple memory
windows to examine different data at the same time, and scroll around
inside the window to get different addresses.

Object editing is done on a per object basis. Simply position the cursor
within the object and type a new value. Once you begin editing, an Edit
box appears. The Edit box closes when you move the cursor off the current
object, and the target memory is then updated (written) with the new
value. An edit operation can be aborted by pressing the <ESC> key. Note
that target memory is always written in the current object size (word, half
words, etc).

The Execution Toolbar’s snap button will bring the window back to
the address result of the address expression. Also note that a data refresh
(read) can be done via the Master Menus Misc/Refresh menu item or the
Shortcut menu. The Memory Window is shown below:
EDB User’s Manual 0380-0162-10 Rev 05 99

4 Menu and Window Reference
Memory Window Toolbar

Context Input Box Allows you to override the default context
configured via the global context toolbar. The
context setting can affect how the expression
evaluates, if the expression references any context
relevant data. Note that this input box is only
available if you are using a CPU that supports CPU
contexts, or you have an appropriate
RTOS_API.DLL.

Address Input Box Allows you to specify the beginning of a memory
region to examine. This may be a symbolic name or
expression, like the char_array example above, or a
numeric value, like 0x80001000. The Address
Expression box defaults to CDB style expressions.
The button allows you to specify MON style
expressions. MON style expressions have the
advantage of being able to access the full address
space (see Spaces in the MON manual for details),
but also has the drawback of being limited to global
symbols.

Note that the default input radix for expressions is
decimal in CDB mode and hexadecimal in MON
mode. The current mode can be determined via the
state of the button (MON mode) and the
prompt Expr: (for EDB mode) and Addr: (for MON
mode).

Format Buttons Clicking on these changes the way the data is
displayed.

 Displays the data in instruction (disassembled)
format. Source lines from your program that
match the addresses will be displayed
intermixed with their associated assembly
code. This mode is only valid for word and
half-word width formats. Half-word
instruction format is useful on processors that
support alternate 16-bit instruction modes
(MIPS16/ARM Thumb). Right-clicking on the
far left of one of these source lines will cause
the Execution Window to “home” to that part
of your program, changing the context viewing
100 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
point. This is called hyper-linking (see Context
View Point on page 27). The Shortcut Pop-up
menu (right-click) can also be used to perform
hyper-linking.

 Displays the data in hexadecimal format. Valid
for any mode

 Displays printable ASCII characters with
non-printable bytes displayed as a dot. Valid
only for Byte Width mode.

Display Width Buttons
Clicking on these changes the object size of the
displayed data and also affects which formats are
available.

 Displays eight bytes (one double word) in hex.

 Displays four bytes (one word) objects in the
selected display format.

 Displays two bytes (one half-word) objects in
the selected format.

 Displays memory as hex bytes.

MON Expressions When active, the MON Expressions button
causes the address box data to be parsed by the
MON expression parser. See Address Input Box
above for more details.

Shortcut Menu The Memory Windows Shortcut (right-click) menu
provides access to the standard Copy, Toolbar on/off,
etc., and also allows toggling the MON Expressions
button, causing a data refresh, and configuration of
the display format.
EDB User’s Manual 0380-0162-10 Rev 05 101

4 Menu and Window Reference
Option Settings Dialog

Configuration Option Settings can be modified via the dialog below.

Category Selection Box

The category selection controls the contents of the Option List box. It
defaults to the all selection which means the Option List contains all the
available options for the given target environment. Other options in the
category list limit the options to a small related set, making it easier to
examine the settings.

Options List

This scrollable listbox within the dialog allows you to view and select for
modification all the options displayed by MON's DO command. Selection is
performed via standard listbox mouse and key actions. Only one item may
be selected. A selected item expanded description appears in the Option
Description box. This description is the same as that produced via MON's
DOV command.

Name The option name.

Value The current value.

Option Description

This box displays text describing the details of the option, its range of
allowed values, and its default value.
102 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Value Editing Group Box

This box contains either an edit box and Apply button (allowing the editing
of numeric options), or it contains a simple drop list selection for
enumerated options.

Edit Value Box This edit box allows the configuration of numeric or
address values. Upon making a change the apply
button will de-gray and can be used to parse and
accept the change (if valid). Switching from one
item to another also cause an auto-apply (parsing
and acceptance) to take place (if changes are made).

Drop Down Selection Box
This box allows the easy changing of options that
have a limited set of enumerated values. The
description of each value's meaning can be found in
the Option Description box.

Apply Button This button is available only for values that require
direct keyboard editing (like numeric or address
options). It turns non-gray after editing.

Profiler Data Window

The Profiler Data Window provides convenient scrollable access to any
captured profiler data in your emulator (ICE versions of EDB only). The
window's column headers provide not only column identification but
allow you to sort by the column as well. Sorting is limited to the range,
start, and cycles columns. The currently selected column is identified by a
^ or v in front of the column name. Clicking on the currently selected
column will toggle the ascending/descending aspect of the sort. Note that
the column widths can be manipulated by dragging the mouse on the
divider lines.

A short description of the columns follows:

Range The name of the procedure and source code line(s) if
any.

Start The start address for the profiled range.

End The end address for the profiled range.
EDB User’s Manual 0380-0162-10 Rev 05 103

4 Menu and Window Reference
Cycles The total number of cycles counted while the
processor was executing code in the range.

% The percentage of the total cycles counted while
executing in the range.

Histogram A bar graph of the percentage.

Profiler Data Window Toolbar:

Refresh This button causes EDB to upload fresh Profiler data
from the emulator. This would be necessary if you
leave the Profiler Data Window open while you
resume execution of your target program. When
execution next stops, the emulator's Profiler Data
buffer will be full of new information but the Profiler
Data Window will still be showing the data captured
earlier. The new data is not uploaded automatically
since you may still be viewing the earlier data and
may not be ready to view new data. This button is
also available on the Shortcut menu as Refresh Data.

Clear When selected, this button clears any current profiler
data.

Note that the toolbar can be turned on/off via the Shortcut menu's
(right-click) toolbar item.

Profiler Data Window Shortcut Menu:

Refresh Data This menu item operates the same as the toolbar's
Refresh button. For details, see the Refresh button
description above.

Clear When selected, this button clears any current profiler
data.

Hyper-Linking Right-clicking in the far left column of a line in the
window causes the Execution Window to change
context to the referenced line and/or function. You
can also access this feature via the Shortcut
(right-click) menu. (For a definition of hyper-linking,
see Context View Point on page 27.)

Ignore 0 Cycle Functions
Suppresses display of ranges that have cycle counts
of zero.

Combine RAM & ROM spaces
When selected, this choice causes the profiling
hardware to ignore the control signal that
differentiates between the Instruction ROM and
Instruction RAM address spaces. It is applicable
only to target systems using the AMD Am2900x and
Am29050 processors, and should be activated if the
104 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
target memory system ignores the IREQT signal.
This menu item is a toggle.

Profiler Setup Dialog

This dialog provides setup access to the powerful profiling capability of
EPI’s In-Circuit Emulators (ICE versions of EDB only).

The dialog displays the functions, lines, and ranges to be profiled. The
Available Ranges box displays the number of available profiler buckets
(ranges) that can be added.

Profiler Setup Dialog Buttons and Controls:

Add All Functions This button automatically creates a range for each
function in your program, in ascending address
order. If there are more functions than your
emulator's profiler option supports, the first group
will be defined and the Next Group of Functions
button will be enabled. In this case, it will be
necessary to execute your program multiple times to
profile the entire executable image at the function
level.

Next Group of Functions
This button is enabled only if a previous All
Functions or Next Group of Functions ran out of
profiler ranges before running out of functions. If so,
clicking on this button resumes adding ranges where
the previous operation left off.

Add Functions...
This button allows you to choose a specific function
or list of functions for profiling, optionally
EDB User’s Manual 0380-0162-10 Rev 05 105

4 Menu and Window Reference
line-by-line. See Add Function(s) below for more
details.

Add Next Set of Lines
Similar to Next Group of Functions, this button will
resume adding ranges for executable lines in the
function, if profiling a function by lines previously
overflowed the available number of profiler ranges.
Note if you selected multiple functions, only the
lines from the function that is left off will be added.
Any other functions that did not previously get
added will need to be re-added manually.

Add Arbitrary Range...
This button allows an arbitrary address range,
optionally divided into a number of equal sized
sub-ranges, to be added. It brings up the Add
Arbitrary Range Dialog on page 107.

Delete This button deletes the selected range(s).

Delete All This button deletes all current ranges allowing a
fresh specification to be created.

Mode Displays and allows for the configuration of the
profiler operation mode. The modes available will
vary with the type of ICE in use. Please refer to your
ICE manual for details on these modes.

OK Accepts any changes made and closes the dialog.

Add Function(s)

The Add Functions dialog box allows you to select function(s) to add to the
profile list. If the function(s) is compiled with source level debug
information turned on, you can check the By Line box to split the function
into separate ranges by executable line. Below is an example of the dialog.
106 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
NOTE: If the By Line box is checked, and too many executable lines exist in
the function(s) being profiled, as many ranges as possible will be added
and the Add Next Set of Lines button will be enabled. However, if there are
multiple functions being added at once, the remaining functions that were
not added will be lost and must be entered again. You will get a warning
message when this happens.

Add Arbitrary Range Dialog

This dialog box allows you to manually specify an address range to be
added to the profiler list. Entering a number in the Split Into input box will
split the range into that many equal-sized sub-ranges. If your target
system has separate Instruction RAM and Instruction ROM address spaces,
and you have not selected the Combine RAM & ROM Spaces menu item,
you can specify which address space your range is in by checking the
appropriate check box.

Program Input/Output Window

The Program I/O Window lets you interact with your target program
through stdin and stdout. If your program is setup to use libraries for
I/O that are compatible with MAJIC’s interception methods, then the I/O
is routed to your host via MAJIC/EDB. If the Program I/O Window is not
open, input produced by your target program will force it open. Otherwise
you can select Open from the menu or via a toolbar button (see the Program
I/O Command on page 76).

i

EDB User’s Manual 0380-0162-10 Rev 05 107

4 Menu and Window Reference
The Program I/O toolbar provides program input and history features. If
you enter data in this input box it will be buffered (upon hitting <CR>) and
provided to your target program to satisfy any calls for input from stdin.
Note that input is always line based. If input is not available at the time
your program requests it, then program execution will pause until you
enter the data. Also note that if you are paused while waiting for input,
any Stop requests will not be serviced until the current program input
request is met. (See Stop Command on page 83.)

The Toolbar History buttons can be used to recall previous input, edit, and
re-enter.

See also: Session and Program I/O Shortcut Menu on page 114, and Session/
Program I/O Toolbar on page 114.

Properties Dialog

General Properties

All the items below are saved in the edbxxx.ini file. See Save Layout
Command on page 72 for more details about this.

Scrollbars EDB’s horizontal and vertical scrollbar can be set on
(displayed) and off via these check boxes. This
affects every EDB Window except the Watch and
Profiler Data Windows.

Layout These options control the saving and restoring of
EDB’s screen/window layout. We suggest setting
the screen the way you like, saving it, and then turn
off the save layout feature so that each time you start
EDB it will have your setup defined. Layout
information is normally kept in your Windows
108 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
directory under the file named edbxxx.ini, where
xxx is sim or ice.

Misc Allows adjustment of EDB’s tab size, display radix
(CDB’s n command), and background display. The
tab size applies to any line where source code is
displayed. The display radix effects program
variable displays in both the Session and Watch
Windows.

Toolbars Selecting the Exec Toolbar Text Labels option turns
on the display of text labels below the Execution
Toolbar button icons (see Execution Toolbar Command
on page 80). The text labels take up considerable
screen space, so if you are using a small display
screen you may want to leave this option off.

Selecting the Flat Bars option gives EDB’s toolbars a
flat look and feel (sometimes referred to as cool bars).
Changing this option requires you to restart EDB
before the option change can take effect. This is due
to bugs in the Microsoft Windows DLL files that
provide the support for this feature.

Window Data The Restore Watch/Memory Expressions option
allows you to control whether the expressions in
these windows are saved and restored across debug
sessions.

Font Information This shows what EDB is using as the font for all its
windows except the Watch Window. The Change
Font button brings up a standard Windows Font
dialog whereby you can adjust the font and font size.

Program Options Properties
EDB User’s Manual 0380-0162-10 Rev 05 109

4 Menu and Window Reference
Many of the options below may not be available on all types of execution
vehicles. In such a case, the option will be grayed out.

Little Endian Target Specifies whether the target is little endian or
big endian.

Reset Address Specifies the hexadecimal address at which
the target begins execution when reset is
released.

Calling Convention This option allows you to tell the debugger
which calling convention was followed by
the compiler in the generation of the code in
the program under test. o32 is the original
MIPS standard R3000 calling convention.
n32 is the newer MIPS standard for R4000
(MIPS 3 ISA and later) processors with 32-bit
pointers. The EPI compiler generates n32 by
default. o64 refers to the calling convention
used by many GNU compilers for the R4000.

Note that failing to set this option correctly
will cause both the Calls Window and the
display of any stack-based variable to be
incorrect.

Section Load Options This box lists the current load options, and
allows you to modify them. Section types
marked with a check will be downloaded the
next time a download is required. Section
types not marked with a check will not be
downloaded. Load All and Load None
buttons are simply shortcuts to turn all the
check boxes on or off.

Program Arguments Set or edit the command line arguments to be
sent to your target program. For details, see
the r command, described in Run on
page 48.
110 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Color Properties

This dialog allows you to configure the colors used for all various aspects
of window data. However, data in the Session and Program I/O Windows
is configured via MON's EO command. See the MON manual or MON's
online help system for details.

Text Type This list box identifies and allows you to select the
current text type to examine or change its color.
Below are listed the various text types and their
usage.

default Default text color applies to many items in
different windows. Specifically, Watch
Window names column, Register Window
names column, Call Stack Window, Profiler
Data, and the default color in the Session/
Program I/O Windows (when color is turned
off).

comments Color for code comments in Execution
Window.

literals Color for code literals (numbers) in Execution
Window.

preprocessor Color for C preprocessor directives in
Execution Window.

punctuation Color for C/C++ punctuation symbols in
Execution Window.

keywords Color for C/C++ keywords in Execution
Window.

address field Color for address fields (Execution and
Memory Windows).
EDB User’s Manual 0380-0162-10 Rev 05 111

4 Menu and Window Reference
disassembly Color for disassembled code (Execution and
Memory Windows).

data Color for general data display (Register, Trace,
Watch (value column), and Memory Windows).

modified data Color for general modified data (Register,
Trace, and Memory Windows).

symbols Color for symbols in the Memory Window.

errors Color for various error messages (does not
apply to Session Window).

Colors This drop down list box allows you to configure the
color for the selected text type.

Sample This box shows an example of what the selected
color will look like.

Register Window

The Register Window lets you examine and modify your target’s registers.
The drop down box in the toolbar allows you to specify which logical set of
registers you wish to view. Different processors will have different sets of
registers available. You can also add custom registers and register
windows (see Custom Registers and Register Windows on page 20).

Register editing is done on a per register basis. Simply position the cursor
within the object and type a new value. Once you begin editing, an Edit box
appears. The Edit box closes when you move the cursor off the current
object, and the register is updated (written) with the new value. An edit
operation can be aborted by pressing the <ESC> key.

You can have multiple register windows all displaying any register set
available. Two Register Windows are shown below:

Register windows remember their contents across execution starts and
stops and highlight registers that have changed value since the last time
your program stopped. Note that the Register window does not allow the
selection of RTOS based context views. However, the window’s Register
112 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Set drop-down box can be used to select CPU context views. RTOS users
can use the global Default Context box to change the Register window’s
view, or manually display thread relative register sets by some simple
commands in the Sessions Window, as follows:

MON> dw r0 r31 ; vc <context>; dw r0 r31

Register Window Toolbar

The Register Window toolbar provides a drop-down box that allows for
selection of the logical set of registers to display. The available register sets
vary depending upon the microprocessor in use.

The toolbar can be enabled or disabled via the Shortcut (right-click) menu.

RTOS Window

The RTOS Window, shown below, provides an easy way to browse through
RTOS objects such as threads, queues, memory partitions, etc. The window
presents each object class as a tree node with each object of that class in
turn being a node of the class. A header line is displayed for each object
class when opened. On the left of the Thread class list is a yellow arrow
(current task pointer).

Data items that represent pointers to memory or objects in memory become
buttons when the mouse cursor is hovered over the item. A left or right
click on the selected button brings up the short-cut menu, shown below.
EDB User’s Manual 0380-0162-10 Rev 05 113

4 Menu and Window Reference
The menu items perform the following functions:

Session Window

The Session Window allows access to EDB’s powerful command languages
(CDB and MON) and gives visual feedback on many EDB operations.

The session toolbar provides CDB command input and history features
and full access to EPI’s low level debugger MON via the MON toggle
button. Note that a separate history buffer is used for both CDB versus
MON Session mode.

Session and Program
I/O Shortcut Menu

Shortcut Menu The Shortcut (right-click) menu has the following
commands:

Session/Program I/O
Toolbar

This toolbar provides the Command Input/Edit box and History buttons. The
Command Input/Edit box allows you to enter, edit, and recall both debugger
commands (Session Window) and responses to program input requests
(Program I/O Window). Normal Windows edit keys are supported

Send to Memory Window This menu item opens a new memory
window and configures it with the selected
address

Add to Watch Window If selectable, this menu item casts the given
address to the proper data type and adds it
to the watch window.

Copy Field This menu items copies the selected data to
the clipboard.

Copy Copy selection to the clipboard.
Accelerator key: <Ctrl-C>

Select All Selects all the text in the window.
Accelerator key: <Ctrl-A>

Clear Window Clear’s the window’s content.

Toolbar Toggle the hidden/displayed state
of the window's toolbar.

Properties Brings up Properties dialog.
Allows display and edit of
program configuration.
114 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
including Cut, Copy, and Paste operations. The Up/Down arrow keys (or
buttons) can be used to recall and edit previously entered commands.

The toolbar can be turned off via the Shortcut (right-click) menu. If a
pending command input request is asked for that must be satisfied, the
toolbar will automatically reactive itself.

For a summary of EDB command mode commands see Chapte r3,
Debugger Commands on page 39.

Command History Recall Buttons

 These buttons allow you to recall and re-enter previously
entered commands. The up and down arrows recall previous
commands. The Execute (third) button operates the same as
having pressed the <Enter> key.

Note that Session Window and Program I/O Window
maintain separate command history buffers. Separate
history buffers are also maintained in the Session Window
for CDB vs. MON command mode.

Your history data is saved between debug sessions in a file
called startedb.hst. Note that the MON and Program
Input history data is relevant to and used by the command
line version of MON as well.

MON Command Mode

 The Session Window supports two input modes. CDB
commands (default) and MON commands. MON
command mode is entered by typing the command mon at
the prompt, or hitting the MON button.

Note that MON commands are not documented in this help
file. Please refer to the hard copy MON manual or online
help system via MON's h command.

Watch Window

The Watch Window provides a convenient way to do expression
evaluation. Expressions entered in the Watch Window are updated each
time your program stops executing. On each update the expression is
compared against the old value and changes highlighted. If the expression
result changes between updates the changed text is displayed in a different
color. The last line of a Watch window is always the new item input line.
You can select it and start typing to enter new items. The Watch Window
supports multiple panes of data, and you can launch multiple Watch
Windows. The Watch Window looks like:
EDB User’s Manual 0380-0162-10 Rev 05 115

4 Menu and Window Reference
Adding Items Items can be inserted in several ways. First, you can
simply start typing on the row with focus or,
<left-mouse-click> on a selected row. In either case an
input box will pop-up to allow the editing to occur.
Expressions can also be pasted from the clipboard
via the standard Paste menu items or keys <Ctrl-V>.
And, finally selected text from any EDB Window can
be dragged and dropped on the Watch Window.

Selecting Items The Watch window supports standard Windows list
selection mechanisms. <Left-Click> selects an item
and deselects any previous selections,
<Ctrl-Left-Click> selects without deselecting any
previous items, and shift-click extends a selection
from the last <Left-Click> item to the new item. You
can also use the arrow keys to move the selection
around.

Deleting Items Items can be deleted by selecting one or more items
and pressing the <Delete> or <Ctrl-X> Cut keys. The
<Cut> key will copy the items to the clipboard before
the deletion occurs.

Editing Expressions
Expressions (the left side) can be edited by either
hitting the mouse button on a selected expression or
hitting the <CR> key on a selected. The relative size
of the header fields to one another can be adjusted
by a <Left-Click-Hold> and drag on the dividing line.
Note that when sizing the Watch Window the
columns will each resize proportionally.

Editing Values Values (the right side) can be changed by clicking on
a changeable value line. This brings up a Dialog
Window allowing a new value to be entered. Lines
of structures that do not display values (display
syntax) are not editable.

Header Fields The relative size of the header fields can be adjusted
by a <Left-Click-Hold> and drag on the dividing line.
Note that when sizing the Watch Window the
columns will each resize proportionally.
116 0380-0162-10 Rev 05 EDB User’s Manual

Menu and Window Referenc e 4
Shortcut Menu The Watch window shortcut (right-click) menu,
described below, provides access to the standard
features like Cut, Copy, etc., but also allows you to
configure the display radix, and the actively
displayed window pane (Watch 1..4).

Toolbar The Watch window toolbar provides access to the
four watch panes, and the ability to change to the
view context associated with the window. (See Watch
Window Toolbar on page 118.) The watch panes
provide a convenient means to watch function
relative values and display only when needed.

NOTE: Unlike most of EDB’s windows, the Watch window’s font and scroll
bars are not affected by the Properties options (See Properties Dialog on
page 108). Instead, the vertical scroll bar is always on and the horizontal
scroll is off in favor of the Watch Tips feature: if a value in either the Name
(expression) or Value (expression result) column overflows the column
width, you can view the full text by hovering the mouse over the field.

Watch Window Shortcut Menu

The Watch Windows Shortcut menu is dependent upon a left or right
column click. Below are the menu items common to both:

Cut Cut the selection to the clipboard. Accelerator key:
<Ctrl-X>

Copy Copy selection to the clipboard. Accelerator key:
<Ctrl-C>

Paste Paste selection from the clipboard. Accelerator key:
<Ctrl-V>

Clear Delete or Clear selected items. Accelerator key:

Select All Select all the items in the window. Accelerator key:
<Ctrl-A>

Radix (Pop-up menu - Hexadecimal, Decimal, Octal, Binary)
Configures the global display radix for all expression
output in EDB.

Watch 1..4 Display panes 1..4 of the Watch Window.

Toolbar Toggle the hidden/displayed state of the Watch
Windows toolbar.

Properties Bring up Properties dialog (see Properties Dialog on
page 108). Allows display and edit of program
configuration.
EDB User’s Manual 0380-0162-10 Rev 05 117

4 Menu and Window Reference
Left Column Shortcut Menu Additions:

Dereference De-reference the clicked-on expression.

Un-Dereference Un-Dereference the clicked-on expression.

Right Column Shortcut Menu Additions:

Edit Value Edit the clicked-on value (if allowed).

Dereference De-reference the clicked-on value.

Reference Reference the clicked-on value.

Watch Window Toolbar

The Watch Window toolbar provides four buttons that each activates a
different watch pane. Each pane contains its own set of watch expressions.
This feature is useful to not only provide more room for watch data
expressions, but also organize your watch data based on relevant scopes
(for example, put data variables related to one function/breakpoint in one
watch pane).

The Watch Window toolbar can be enabled or disabled via the Shortcut
(right-click) menu.

Below is a sample Watch Window toolbar showing the Context drop-down
list.

and Add Item De-reference the clicked-on
value and add as a new
expression.

and Replace Item De-reference the clicked-on
value and replace current
expression with new value.

and Add Item Reference the clicked-on value
and add as a new expression.

and Replace Item Reference the clicked-on value
and replace current expression
with new value.
118 0380-0162-10 Rev 05 EDB User’s Manual

Index
Symbols
! command 65
command 64
% command 64
/ command 46
< command 58
<< command 58
<Alt+F4> command 73
<CR> command 65
<Ctrl+O> command 72
<Ctrl-Break> command 83
<Ctrl-D> command 65
<F10> command 84
<F5> command 83
<F6> command 85
<F8> command 84
> command 58
? command 46

A
A command 56
a command 56
Add Arbitrary Range dialog 107
Add Functions dialog 106
Address format command 67
Again command 65
arm targets 36
assertion commands 56
automatic startup command files 19

B
B command 54
b command 53
breakpoint

commands 50
introduction 10

Breakpoints
command 78
dialog 86

C
c command 49, 58
Call Stack command 77
Call Stack window 90

examining data 14
navigating 11

carriage return command 65
caveats 15
Color Properties 111
command files 19
command operands 27
Command playback command 58
Command recording command 58
command summary 40
commands

assertion 56
breakpoints 50
history 63
miscellaneous 64
program control 47
record and playback 57
summary 40
viewing 44

commands, debugger 39
configuring EDB options 6
Context toolbar 81
context view point 27
Continue command 49
continue execution 9
controlling an application 9
conventions, EDB 27
Create assertion command 56
EDB User’s Manual 0380-0162-10 Rev 05 119

Index
Ctrl-D command 65
custom registers 20

D
D command 54
d command 54
da command 65
data, examining 12
debugger command operands 27
debugger commands 39
Delete breakpoint command 54
dialogs 86
Display alias command 65
Display configuration command 65
display formats 32
do command 65

E
e command 44
ea command 66
edbice 4
edbsim 4
Edit history command 64
Edit menu 73
Enter alias command 66
Enter configuration option command 66
Enter procedure command 44
eo command 66
examining application data 12
Exec menu 82
executable files 17
Execute history command 64
executing an application 9
Execution command 76
Execution toolbar 80
Execution window 91

navigating 10
shortcut menus 93
toolbar buttons 92

Exit assertion command 57
Exit command 73
expressions 28

F
F command 68
f command 58, 67
File menus 71
File open command 48
File read command 59

File write command 60
files used by EDB 17
Fix-it command 68
fo command 48
formats, display 32
formatting, structure 34
FR command 59
FW command 60

G
g command 49
General Properties 108
General toolbar 79
Go command 83
Go from line command 49
Go Interactive command 83
Goto command 62
graphical user interface 2

H
h command 63
Help menu 85
history commands 63
history, EDB 1
Hyper-linking 27

I
I command 68
i command 68
ICE Trace command 77
ICE Trace Display window 96

navigating 12
ICE Trace Spec command 78
ICE Trace Specification dialog 98
If command 55
Indent command 68
Info command 68
initialization files 18
Instruction Step Into command 84
Instruction Step Over command 85
instruction view mode 93
interface, user 2
invoking EDB 4, 24

examples 5

K
k command 50
KA command 68
Kill alias command 68
120 0380-0162-10 Rev 05 EDB User’s Manual

Index
Kill program command 50

L
L command 44
l command 44
lf command 48
List breakpoints command 54
List history command 63
List objects command 44
Load command 82
Load file command 48
loading an application 8

M
Memory command 76
Memory window 99

examining data 14
menus 71

Edit 73
Exec 82
File 71
Help 85
Misc 85
short-cut 3
View 75
Window 85

mips targets 35
Misc menu 85
Miscellaneous commands 64
Modify assertion command 56
MON command 68
MON subsystem command 68

N
n command 69
navigating applications 10
notational conventions vii
Number format command 69

O
opening an application 8
operands, command 27
Option Settings

command 78
dialog 7, 102

options
invocation 25

options, configuring 6
options, invocation 4

Output recording command 58

P
playback commands 57
positioning windows 3
pre-defined special variable names 31
Print source command 55
Print string command 56
procedure calls 29
Profiler Data command 77
Profiler Data window 103
Profiler Setup command 78
Profiler Setup dialog 105
Program control commands 47
Program I/O command 76
Program I/O Shortcut menu 114
Program I/O toolbar 114
Program Input/Output window 107
program names, EDB 4
Program Options Properties 109
Program to Debug

command 72
selecting 8

Properties dialog 6, 108

Q
Q command 55, 58
q command 69
Quiet command 55
Quit command 69

R
R command 48
r command 48
Recent File List command 73
record and playback commands 57
Refresh Window Data command 85
Register command 77
register names 35
Register window 112

customizable registers 20
examining data 14

Restart command 82
Restore Layout command 72
RTOS

command 78
window 113

Run command 48
Run to Cursor command 84
EDB User’s Manual 0380-0162-10 Rev 05 121

Index
S
s command 50
Save Layout command 72
Save Session Info command 73
scroll bar 3
Session command 76
Session Shortcut menu 114
Session toolbar 114
Session window 114
Set breakpoint command 53
Set command sub-system mode command 59
Set quiet mode command 58
Shell command 65
Shift command 62
short-cut menus 3
si command 50
sizing windows 3
Source directory command 69
source file directories 69
Source Step Into command 84
Source Step Out command 84
Source Step Over command 83
special variables 30
starting

application execution 9
EDB 4

startup command files, automatic 19
startup files 5, 6
Status bar 81
Step command 10, 50
stepping 10
Stop command 83
stopping execution 9
String search command 46
structure formatting 34
support viii
symbol files 18
symbols used in this manual viii

T
T command 46
t command 46, 58
target differences 35, 36
targets

arm 36
mips 35

technical support viii
title bar 2
Toggle case command 70
toolbars 3

Context 81
Execution 80
General 79
Memory window 100

Trace stack command 46
Trace window, navigating 12

U
u command 69
Unshift command 62
user interface 2

V
v command 69
variables 29

special 30
vc command 45
Verify Load command 83
version vii
view context 45
View menu 75
viewing commands 44

W
Watch command 77
Watch window 115

examining data 12
shortcut menu 117
toolbar 118

Window menu 85
windows 86

overview 3
short-cut menus 3
size and position 3

X
x command 57

Y
Y command 70
Yak command 70

Z
Z command 70
122 0380-0162-10 Rev 05 EDB User’s Manual

	Contents
	About this Manual
	Version
	Notational Conventions in this Manual
	Symbols Used in this Manual
	Support
	Documentation Feedback

	Introducing EDB
	EDB History
	The EDB Graphical User Interface
	Title Bar
	Scroll Bars
	Toolbars
	EDB Windows
	Window Size and Positioning
	Window Toolbars
	Window Short-Cut Menus

	Starting EDB
	Startup Arguments
	EDB Invocation Examples
	EDB Startup Files
	Application Program Startup File

	Configuring EDB Options
	Properties Dialog
	Option Settings Dialog

	Opening and Loading an Application
	Selecting the Program to Debug
	Loading your Program

	Executing and Controlling your Application
	Starting, Stopping, and Continuing
	Stepping
	Breakpoints

	Navigating your Application
	Navigating with the Execution Window
	Navigating with the Call Stack Window
	Navigating with the Trace Window

	Examining your Application Data
	Examining via the Watch Window
	Editing Watch Data

	Examining via the Memory Windows
	Examining via the Register Windows
	Examining via the Call Stack Window

	Using the EDB
	EDB Caveats
	EDB Files
	Executable Files
	EDB Symbol Files
	Initialization Files
	Command Files
	RTOS DLL File
	Custom Registers and Register Windows
	Predefined spaces
	Sample Register Definition file

	Invoking EDB
	Conventions
	Context View Point
	Debugger Command Operands
	Expressions
	Procedure Calls
	Variables
	Special Variables
	Pre-Defined Special Variable Names
	Display Formats

	MIPS Target Differences
	ARM Target Differences

	Debugger Commands
	Command Summary
	Viewing Commands
	Enter Procedure
	List Objects
	View Context
	String Search
	Trace Stack
	Evaluate Expression

	Program Control Commands
	Load File
	File Open
	Run
	Continue
	Go From Line
	Kill Program
	Step

	Breakpoint Commands
	Set Breakpoint
	List Breakpoints
	Delete Breakpoint
	If
	Print Source
	Quiet
	Print String

	Assertion Commands.
	Create Assertion
	Modify Assertion
	Exit Assertion

	Record and Playback Commands
	Command Recording
	Output Recording
	Command Playback
	Set Quiet Mode
	Set Command Sub-System Mode
	File Read
	File Write
	Goto
	Shift / Unshift

	History Commands
	List History
	Execute History
	Edit History

	Miscellaneous Commands
	Again
	Shell
	Display Alias
	Display Configuration Options
	Enter Alias
	Enter Configuration Option
	Address Format
	Fix-It
	Indent (tab size)
	Info
	Kill Alias
	MON Subsystem
	Number Format
	Quit
	Source Directory
	v
	Yak (comment line)
	Toggle Case

	Menu and Window Reference
	EDB Menus
	File Menu
	Edit Menu
	View Menu
	Exec Menu
	Misc Menu
	Window Menu
	Help Menu

	Windows and Dialogs
	Break Points Dialog
	Call Stack Window
	Execution Window
	ICE Trace Display Window
	ICE Trace Specification Dialog (ICE targets only)
	Memory Window
	Option Settings Dialog
	Profiler Data Window
	Profiler Setup Dialog
	Program Input/Output Window
	Properties Dialog
	Register Window
	RTOS Window
	Session Window
	Watch Window

	Index

