

MAJIC Windows CE .NET eXDI
User's Manual

 Embedded Performance, Inc.
Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide i

 Table of Contents

April, 2003

EPI has made every attempt to ensure that the information in this document is accurate and complete.
However, EPI assumes no responsibility for any errors, omissions, or for any consequences resulting from the
use of the information included herein or the equipment it accompanies. EPI reserves the right to make changes
in its products and specifications at any time without notice.

Any software described in this document is furnished under a license or non-disclosure agreement. It is against
the law to copy this software on magnetic tape, disk, or other medium for any purpose other than the licensee's
use.

Embedded Performance, Inc.
606 Valley Way
Milpitas, California 95035
USA
Voice: (408) 957-0350
FAX: (408) 957-0307
email: sales@epitools.com
 support@epitools.com
URL: http://www.epitools.com

Acknowledgments:

XScale Micro-Architecture, PXA250 are trademarks of Intel®.
ARM, ARM7, and ARM9 are trademarks of ARM Technologies, Inc.
Windows, Windows CE, Platform Builder are trademarks of Microsoft Corporation.
MAJIC, MONICE, and EPI are trademarks of Embedded Performance, Inc.
All other trademarks are trademarks of their respective companies.

© 2001-2003 Embedded Performance, Inc.
All rights reserved.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide ii

 Table of Contents

Table of Contents

Table of Contents ..1

Introduction ...1

About this Manual...1
What is eXDI?...1
Supported Windows CE Environments...2
Related Documentation ...2
Notational Conventions...3

Installation ...4

Getting Started ..4
Updating the Registry..6
Test Your Driver Setup/Installation ..6
eXDI Files ...7

Configuring Platform Builder..9

Configuring your Platform Builder Project to use MAJIC9

Using the Driver ..12

Debugging a Downloadable Image ...12
Debugging a Boot Image...14
Breakpoint Issues ..16
Using the eXDI Monitor Window...18

Trace Setup and Display ..18
Coprocessor and Peripheral Register Access19
Memory Access..19
Option Configuration ...20
Shuting Down ..20

Using the PlugIn ..21

Launching the PlugIn ..21
Using the Trace Window ..22

Trace Display Modes ...22
Miscellaneous Features ...23

Symbol Reload...23
Break ..23
Always On Top ..23

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 1

 Table of Contents

The Settings Window..23
Auto Start Execution..24
Capturing a Debug Log Session...24

Disconnecting the PlugIn ..25

Support/Contact Information ..27

EPI Support ...27
Microsoft Support ...27

Index...28

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 2

 Introduction

1

Introduction

This chapter provides a brief overview of the scope of this manual, what
eXDI is, our MAJIC eXDI Driver / PlugIn, and which Windows CE
environments are supported.

About this Manual

This is the user manual for the Embedded Performance eXDI driver and
PlugIn. It is aimed at end-users who intend to use the MAJIC with
Microsoft’s Platform Builder IDE.

Note: Except where explicitly stated to the contrary, the term MAJIC refers to all
models of MAJIC (references to MAJICPLUS and MAJICMX refer to those
respective models).

What is eXDI?

eXDI is Microsoft’s Extended Debug Interface. This interface allows EPI
to create a driver that is used by Microsoft’s Platform Builder’s IDE to
provide full access to MAJIC’s hardware-based debug services. In
addition, we offer an eXDI PlugIn which provides extended GUI-based
debug services not available within Platform Builder itself. A good
example of this is Target CPU Trace services.

Note: Windows CE requires installation on Windows 2000 or Windows XP
Professional, consequently the driver has the same restrictions as Windows
CE.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 1

 Introduction

Supported Windows CE Environments

At the time of this writing MAJIC eXDI supports the following Windows
CE-based development environments. If you don’t see your Windows CE-
based environment listed, please contact EPI for the latest information.
Note that this manual is targeted at users of Windows CE .NET.

Windows CE .Net Full Support

Windows CE 3.0 Access to symbols and source code within the MAJIC eXDI Monitor
Window and PlugIn are not supported.

Pocket/PC 2002 Requires installation of Platform Builder 3.0 or .NET for debug via
Platform Builder. OS-aware functionality in Platform Builder is not
supported due to incompatibility issues with the divergent Windows CE OS
used in Pocket/PC. This basically means it can only be used for code
linked in with the kernel (nk.exe). Platform Builder cannot determine the
load address of anything dynamically loaded (like a DLL or separate EXE
file). Note that this is a limitation of Platform Builder, not EPI’s eXDI
driver.

Pocket/PC 2003 Please contact support@epitools.com for the current road-map.

Related Documentation

Microsoft Windows CE .NET Online Help Describes the Extended Debug Interface (eXDI)
supported by Windows CE 3.0 and Windows .Net.

MAJIC User’s Manual Tab section in EPI Development Tools for MAJIC:
Revision 2.0, Dated: April 2002 or later.

MDI for MAJIC User’s Manual Tab section in EPI Development Tools for MAJIC.
Documents usage of EPI’s Meta Debug Interface
Revision 1.0, Dated: May 2001 or later.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 2

 Introduction

Notational Conventions

The following conventions are used in the syntax descriptions of this
manual.

Normal Just Normal Text.

Bold face Identifies characters that must be entered exactly as shown.

Italic Indicates a general category of input described in detail in the command
operand's section.

Header/Note Appearing to the left of a text block, indicates a step boundary or special
note.

Arial Font Indicates text appearing on the screen, e.g. menus or dialogs.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 3

 Installation

2

Installation

This chapter describes how to install and configure the MAJIC eXDI Driver
and PlugIn provided by EPI.

Getting Started

Step 1: Install the Microsoft Windows CE .Net software package. It is important to
do this before installing the EPI Tools package because our installer will
update registry entries created by the Microsoft Installer. If you installed
the Microsoft Windows CE .Net software package first then run the
“install.bat” utility found in the
C:\Program Files\EPITOOLS\EDTx20\exdi\ directory after installing the
EPI Development Tools (EDT) package to update the registry entries.

Step 2: Install the EPI Development Tools package (EDT). Verify that you have a
directory named “exdi” under the installation root of the EDT package. If
you do not, then you have not correctly installed the eXDI Driver software.

Step 3: Install any third-party software, such as the Accelent Systems software, or
your Board Support Package (BSP).

Step 4: Review the MAJIC Quick Start Guide – Hardware as a starting point for
setup and configuration of your MAJIC probe. If you don’t have a printed
MAJIC Quick Start Guide then please refer to the digital version in the
CD’s manuals directory. Review the MAJIC Quick Start Guide –
Software section and then see either step 5 or step 6 for more specifics on
running the MAJIC Setup Wizard.

Step 5: For flash programming with the EPI Flash Programming Utility you will
need to set up a shortcut for MONICE, EPI’s underlying command-
line interface. With this shortcut you can program the bootloader for your
WinCE image.

1. Run the MAJIC Setup Wizard found in the Start menu under
Start-> Programs-> EPI Tools - EDTx-> MAJIC Setup Wizard.
2. At the first screen select Next.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 4

 Installation

3. Under Choose your Debugger select MONICE and click Go.
4. Choose a Project Name and Enter a one line description of your
project, choose Next.
5. Select your Processor Type and Select your Target’s Endianness,
click Next.
6. Choose your connection type. If it is your first time connecting
to the MAJIC you must select the Serial port. If you are not connected to a
network and would like to use Ethernet (cross-over cable) you must
choose an IP address. See the MAJIC User’s Manual for more
information.
7. In the Configuration Files window choose Use Existing Startup
Files. Browse to the samples directory and choose a sample directory
that does not have an _wince extension. The settings for WinCE will
interfere with Flash programming. If there are no sample files for your
platform then choose Create New Startup File and Adjust Default
Properties.
8. In the next screen choose Reference the existing startup files
from their location.
9. Click Perform Actions, and then Done.

A shortcut for MONICE should pop up on your desktop. Power up your
target and the MAJIC, then double-click on the desktop shortcut. Verify
that you are able to connect to your target board, make sure that you see the
message “JTAG connection established” in red letters. Use this connection
in the future for flash programming. See the flash programming utility
manual in the C:\Program Files\EPITOOLS\EDTx20\manuals directory
for more information.

Step 6: To use Platform Builder you will need to setup the appropriate
configuration files for your target board. To do this:

1. Run the MAJIC Setup Wizard found in the Start menu under
Start-> Programs-> EPI Tools - EDTx-> MAJIC Setup Wizard.
2. In the first screen choose Next.
3. Under Choose your Debugger select Platform Builder
(WinCE/PocketPC) and click Go.
4. Choose a Project Name and Enter a one line description of your
project, select Next.
5. Select your Processor Type and Select your Target’s Endianness,
choose Next.
6. Choose your connection type. If it is your first time connecting
to the MAJIC you must select Serial port. If you are not connected to a
network and would like to use Ethernet (cross-over cable) you must
choose IP address. See the MAJIC User’s Manual for more information.
7. In the Configuration Files window choose Use Existing Startup
Files. Browse to the samples directory and choose a sample directory
that matches your target type. If there are no sample files for your platform
then choose Create New Startup File and Adjust Default Properties.
If you are using an XScale reference platform be sure to choose a folder
that has a _wince extension. If there are no sample files for your XScale
target with a _wince extension contact support@epitools.com.
9. In the next screen click Perform Actions, and then Done.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 5

 Installation

Power up your target and the MAJIC, then browse to the
C:\Program Files\EPITOOLS\EDTA20\eXDI\ directory and double-click
on the majic_exdi_driver.exe file. This should launch the eXDI interface
and connect to the target successfully.

Step 7: If you have not already read your MAJIC User’s Manual now is the time.
This can be found in digital format in the
C:\Program Files\EPITOOLS\EDTx20\manuals directory.

Updating the Registry

Normally, the Windows registry is setup when you install the EPI Tools
from a production CD. If you received your software as a zip file or you
are manually moving your EPI Tools installation directory around, then you
need to run the script ./exdi/install.bat to update the registry
settings. For example:

DOS> cd exdi
DOS> install

Note: Microsoft’s Platform Builder should already installed before you install the
EPI Tools CD or run this install batch file. If for some reason you install
Platform builder after installing the EPI Tools CD, then simply run this
install batch file again.

Test Your Driver Setup/Installation

First, make sure Platform Builder is not running. From the Windows Start
menu select Start -> Programs -> EPI Tools - EDTx ->
Majic_Exdi_PlugIn. This launches the PlugIn as shown below:

Now select the menu item Debug -> Connect to MAJIC Probe. If your
setup is configured correctly, then the driver starts and the MAJIC eXDI
Monitor Window pops up as shown below. If it does not start correctly
repeat step 6: in the “Getting Started” section above.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 6

 Installation

Note: The Driver may pop up a configuration selection dialog if you have
multiple configurations defined in your MDI configuration file. If so,
simply select the appropriate configuration. The contents of this window
will vary slightly, but you should get a valid connection established and a
MON> prompt.

Now from the PlugIn Menu select Debug -> Disconnect from MAJIC
Probe. This disconnects the PlugIn from the driver and if no other
applications are connect to the Driver then the driver shuts down.

eXDI Files

The following files relating to MAJIC eXDI support are provided in the
directory where your EPI software is installed.

./exdi/majic_exdi_driver.exe
The MAJIC eXDI Driver.

./exdi/majic_exdi_plugin.exe
The MAJIC eXDI PlugIn.

./exdi/eXdi_epips.dll
A supporting DLL used by the driver.

./exdi/install.bat
A DOS batch file that creates or updates eXDI driver and Platform Builder
registry entries. Note that normally all the needed registry work is done
when you install the tools from the CD. You will need to run the
install.bat file if you manually moved the “exdi” installation
directory or you are installing an engineering version.

./exdi/uninstall.bat
Un-installs registry entries setup by install.bat.

./manuals/MAJIC_eXDI_UserManual.pdf
This manual. Installing the manuals is optional, if you did not install the
manuals then this file can still be accessed directly from the ./manuals
directory on the installation CD.

The following files are not eXDI specific, they are needed regardless of
whether you are using an EPI debugger or a third-party debugger.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 7

 Installation

./mdi/… MDI installation tree. MDI is used by eXDI to talk to your MAJIC probe.
Refer to the MDI for MAJIC User’s Manual for details

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 8

 Configuring Platform Builder

3

Configuring Platform Builder

This chapter explains the steps needed to configure Platform Builder to
utilize your MAJIC probe for hardware debug. The steps outlined here are
for Windows CE .NET. Similar, but slightly different steps are used by
Windows CE 3.0. In either case, the best source of documentation on this
aspect is the actual Platform Builders documentation.

Configuring your Platform Builder Project to use MAJIC

Step 1: Launch Platform Builder and select in the workspace/project you wish to
configure. You probably want to be using a debug build of your project, but
that is not required to utilize MAJIC. The debug build will offer you a
view of non-optimized code, while the Release build will be optimized.
Note that these configuration changes are workspace-specific and you will
need to repeat them for each workspace/project configuration which you
wish to enable for debug with MAJIC.

Step 2: Configure Platform Builder to use a hardware debug probe. Select the
menu item: Target -> Configure Remote Connection. This brings a
dialog as shown below. Click the Use Hardware Debugger checkbox
and select MAJIC eXDI Driver from the Select EXDI Driver drop-down
list box and click the [OK] button.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 9

 Configuring Platform Builder

If you are using a Compaq flash card choose Download: None and Kernel
Transport: None. If you are using an alternative device supported by the
bootloader, such as an Ethernet PCMCIA card, then choose Download:
Ethernet – Download and Kernel Transport: Ethernet – KITL
Transport.

Step 3: Next, we need to tell Platform Builder not to include the software-based
debug kernel. Select the menu item Platform -> Settings. Now select the
Build Options tab and uncheck the Enable Kernel Debugger check box
and click the [OK] button.

Step 4: If you are using an alternative device supported by the bootloader –such as
an Ethernet PCMCIA card –for download, you have the option of
downloading only to target RAM. This will save time by not copying
everything into flash when you connect. This is a good option if you build
frequently. To do this, select the menu item Platform -> Settings and
choose the Environment tab. You will be adding an environment variable
to stop the IDP from saving the downloaded OS image to its internal flash.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 10

 Configuring Platform Builder

Click the New button and for Variable Name: enter IMGINRAM, for
Variable Value: enter 1.

Rebuild your Windows CE image, menu item: Build -> Rebuild Platform.

You are now done with your configuration changes. We suggest saving
your workspace changes before proceeding on with actual debugging.
Select menu item File -> Save Workspace.

Step 4: If you are using a Compaq flash card to transfer the new build to the target,
copy the nk.bin file to the Compaq flash card and place the card in the
PCMCIA slot of the target. Reboot the target and it will automatically copy
the image from the card to the target ROM. If you are using an Ethernet
PCMCIA card see Step 4 in “Debugging a Downloadable Image” in
Chapter 4.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 11

 Using the Driver

4

Using the Driver

This chapter demonstrates usage of the MAJIC eXDI Driver. It is assumed
the user has successfully followed the steps in Chapters 2 and 3 to install
the Driver and configure Platform Builder to utilize it.

Debugging a Downloadable Image
For this example we are using an Intel® XScaleTM Micro-Architecture
(PXA250)-based platform with a working EBOOT installed in flash and
Platform Builder set up for download of a new Windows CE image
(nk.exe) via EBOOT’s download facility.

Step 1: First make sure you are disconnected from the target and no Platform
Builder target services are running. Do this by selecting the menu item
Target -> Disconnect or the Target toolbar button .

Step 2: Starting the eXDI Driver and resetting the target system:
Select the menu item Target -> Connect or the Build Toolbar Go button

. This launches or connects up to an already-running MAJIC eXDI
Driver. The Driver Monitor Window pops up as shown below and the
target is reset and stopped.

Platform Builder takes a few seconds to initialize, read target memory to
establish the state of the target OS (if any), and then open up a disassembly
window at the current PC location (example shown below).

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 12

 Using the Driver

Step 3: Starting the EBOOT Image:

Now we are ready to start the boot code. Select the menu item Debug ->
Go or the Toolbar Go button . EBOOT starts and prompts for an image
to download.

Note that before you select the Go operation you can insert breakpoints
within your downloaded image –but only at locations that Platform Builder
can resolved the address for. This means breakpoints outside of the module
nk.exe can be set, but they will not be loaded until later. An unloaded (or
unresolved) breakpoint can be seen in a Platform Builder’s source window
as purple-colored breakpoint. A red-colored breakpoint indicates a
resolvable breakpoint that has been loaded.

Step 4: Loading your WinCE image:
Tell Platform Builder to begin the code download by selecting menu item
Target -> Download / Initialize or button. The download then
proceeds to completion and execution of your image begins.

At any time you can interrupt this process by simple selecting the menu
item Debug -> Break or button. You can also set a breakpoint either
while stopped or while the image is executing.

Step 5: Updating Module/Symbol Information:
After stopping, if you suspect new modules or DLLs have been loaded, you
need to tell Platform Builder to refresh its modules list. This is done by
selecting the menu item: Target -> CE Modules and Symbols or
button which opens the Modules and Symbols window. If this window was
already open, then you must tell it to refresh its data. This is done with the
window’s refresh button.

If the only module listed is nk.exe, then either you’ve stopped before any
other modules or DLLs were loaded, or your WinCE kernel data format
doesn’t match the format expect by Platform Builders OsAxs.dll module.
This is the reason why source level debugging of Pocket PC 2002 is limited
to the statically-linked nk.exe module.

Step 6: Ending a Debug Session:
Be sure when ending a debug session that you not only end your debug
session via the menu item Debug -> Stop or button, but also end the
Platform Builder target services via Target -> Disconnect or button.
Note that you can do both operations at once by choosing Target ->
Disconnect first.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 13

 Using the Driver

The closing of the MAJIC eXDI Monitor Window may take few moments
as it cleans up various services. Note that the Driver and Window will
remain active if you have a PlugIn running that is actively connected to the
Driver.

Debugging a Boot Image

For this example we are using an Intel® XScaleTM Micro-Architecture
(PXA250)-based platform with EBOOT installed in flash as the image to
debug. It could also be a full WinCE image.

Step 1: It is important to make sure your EBOOT ROM image matches your
debugging image. This involves building your eboot.bin image file and
burning it into flash ROM. Please refer to your Platform Builder
documentation on building EBOOT for details.

Step 2: After building EBOOT and burning in your ROM image, select into
Platform Builder the just built eboot.bin as your workspace. Note that this
is not the eboot.bin from your flat release directory, but instead the file
from the path MS refers to as:
 %_TARGETPLATROOT%\target\%_TGTCPU%\%WINCEDEBUG%.
If you need further help on this aspect please consult your Platform Builder
documentation or contact Microsoft product support.

Step 3: Make sure you are disconnected from the target and no Platform Builder
target services are running. Do this by selecting the menu item Target ->
Disconnect or the Target toolbar button .

Step 4: You can either just begin single-stepping into the ROM or use a hardware
breakpoint near the location in EBOOT you wish to stop and begin real
debugging. For example to stop in main(), first find the location of your
EBOOT’s main function. The file/location may vary based on your BSP.
For the development board used here, it is main.c in the directory
C:\WINCE400\PALTFORM\XSC1BD\EBOOT. Select in this file and
find the start of the code area for the function(). Set a breakpoint at this
location by clicking the cursor on the referenced line and selecting the
breakpoint button. Now select the menu item Edit -> Breakpoints,
select the breakpoint from list at the bottom and click the [Hardware]
button to bring up a dialog for changing the kind of breakpoint used. Select
the Hardware radio button, and then click the [OK] button.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 14

 Using the Driver

Finally, click the Breakpoints dialogs [OK] button and you are ready to
start executing.

Step 5: Next, select the menu item Target -> Connect or the Build Toolbars Go
button . This launches or connects-up to an already-running MAJIC
eXDI driver. The Driver Monitor Window pops up as shown below and
the target is reset and stopped.

Platform Builder takes a few seconds to initialize, read target memory to
establish the state of the target OS (if any), and then open up a disassembly
window at the current PC location (example shown below).

Step 6: Now we are ready to start the boot code. Select the menu item Debug ->

Go or the Toolbar Go button . The target should then break in main.c
similar to below. You can now start debugging.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 15

 Using the Driver

Breakpoint Issues

Platform Builder/WinCE is missing a critical link that MS refers to as the
“Load Notification Hook”. This is an important issue that you need to be
aware of when debugging WinCE-based images and applications.

If the hook were implemented, WinCE would be capable of sending
notification messages to Platform Builder about the loading of new modules
and DLLs. This would allow Platform Builder to gather debug information
on the new items and resolve any breakpoints that it might need
automatically.

The Problem: I set a breakpoint in my code, but when I run, it doesn’t get hit. I know my
code is running, so why is this, and how can I make it work?

The Answer: If the breakpoint is in source code that is not linked in directly with nk.exe,
then it is a dynamically-loaded module. Platform Builder itself does not
know where in memory the WinCE kernel is going to place your code.
Consequently, setting a breakpoint before you code is loaded means the
breakpoint is unresolved and does not get sent to the eXDI driver. If you
believe that your code was loaded prior to setting the breakpoint then you
may need to make sure you are keeping the Modules and Symbols window
refreshed. See section Updating Module/Symbol Information on Page 13.

With PB 4.x you’ll notice unresolved or unloaded breakpoints shown in the
source window are purple. Loaded breakpoints are red.

Work Around 1: Determine the real address of your breakpoint location and then set an
address (non-symbolic) based hardware breakpoint via Platform Builders
Breakpoints Dialog. The steps to do this are listed below:

Step 1: Start up your system and make sure your code is loaded.

Step 2: Open the Modules and Symbols Window and do a Refresh operation.
Make sure your code module is shown as loaded in this window.

Step 3: Bring up your source in a Platform Builder source window. Right-click on
the line you wish to set a breakpoint on, and select Go To Disassembly.
This brings up the disassembly window and shows you the address of your
source line.

Step4: Select Edit -> Breakpoints… and create a new breakpoint using the
address from the disassembly window. Select the [Hardware] button and
change it to be hardware-based. Close the dialogs by selecting [OK]. Note
that if you fail to change the breakpoint to hardware mode, the breakpoint
will still be set, but WinCE is likely to overwrite the breakpoint when
loading your module.

Step5: End your debug session via Target -> Disconnect and restart. Your
breakpoint should now be hit when your code runs.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 16

 Using the Driver

Note: Once you stop at the breakpoint and Refresh the Modules and Symbols
window you should be able set software breakpoints and have them work.

Pitfalls: If you make changes and recompile your code you may need to check the
address of your breakpoint to make sure your source code has not moved in
memory. Note that WinCE will typically load modules in the same order
and therefore at the same virtual address. However, you must make sure
you start up in the same order. If you’re manually loading multiple
applications, be sure to load them in the same order. If this issue becomes
problematic for you we suggest you try the workaround listed below.

Work Around 2: Hard-code a special breakpoint directly in your source code. The Microsoft
compiler provides a method to embed opcodes directly inline with your
source level code. MAJIC recognizes this opcode, stops execution and
reports the occurrence as an “Unknown breakpoint”. The steps below show
this setup in detail

Step 1: Edit the source code where you wish to set your breakpoint and add the
following code above the line you wish to stop on. The specific code value
you use depends upon your target CPU.

For XScale/ARM V5 chips:
 __emit(0xE12cec7e); // breakpoint
For MIPS chips:
 __emit(0x70cece3f); // breakpoint

Step 2: Recompile your code and run it. Upon hitting the breakpoint, notice that
the program counter (pc register) has been adjusted to the instruction after
your hard-coded breakpoint. This allows you to easily continue execution
after stopping.

Note: One way to better manage this breakpoint issue is to hard-code your
breakpoint at your module’s entry point. Once you stop at the breakpoint,
you can then decide to set a normal software breakpoint where ever you
need one.

Pitfalls: If you run your system without the eXDI driver in place your hard-coded
breakpoint will cause your system to hang up. You’ll need to disable the
breakpoint in your code and recompile to run without the MAJIC eXDI
driver loaded.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 17

 Using the Driver

Using the eXDI Monitor Window

The eXDI Driver’s Monitor Window contains a subset of our low-level
Monice (MON) debugger command interface. It contains a rich set of
commands to examine memory and registers, display and control trace
acquisition, and configure your MAJIC probe. Please refer to the MAJIC
User’s Manual for details on the MON command language.

Trace Setup and
Display

For some CPUs, trace setup is as easy as enabling trace capture via MON’s
+te command. Others require setup of what kinds of things to trace, when
to stop etc. The description of this is beyond the scope of this manual.
Please refer to your MAJIC User’s Manual chapter on trace control.

Example: Below is a screen shot of enabling trace and displaying the result.
Note that between the enable (+te) and the display trace (dt) command
we went back to Platform Builder’s menu and told the target Go for a
few seconds and then selected the Break button. This allowes MAJIC
to capture some trace data for display. Note that the amount of data
captured is dependent on your MAJIC model and target CPU. For the CPU
used here, the results can vary with the execution stream, but typically
about 1000 instructions are captured.

MON>+te
Trace mode is: Execution tracing

MON>dt,i
Processing raw trace acquisition...
127 raw trace frames retrieved
961 frames selected for upload
 INSTRUCTION MODE TRACE DISPLAY
 T
FRAME P LOCATION VALUE DESCRIPTION
------ + =========== ======== ==
 943 0 800c37b4: e58d7000 STR r7,[sp]
 944 0 800c37b8: e58d4004 STR r4,[sp,#4]
 945 0 800c37bc: da00006b BLE 0x800C3970 ; OEMIdle+0x1ec
 946 0 800c37c0: e59f01d4 LDR r0,0x800C399C
 947 0 800c37c4: e5901000 LDR r1,[r0]
 948 0 800c37c8: e3510000 CMP r1,#0
 949 0 800c37cc: 1a000067 BNE 0x800C3970 ; OEMIdle+0x1ec
 950 0 800c37d0: e59f01c0 LDR r0,0x800C3998
 951 0 800c37d4: e5901000 LDR r1,[r0]
 952 0 800c37d8: e3510000 CMP r1,#0
 953 0 800c37dc: 0a000005 BEQ 0x800C37F8 ; OEMIdle+0x74
 954 0 800c37f8: eb000223 BL 0x800C408C ; PerfCountSinceTick
 955 PerfCountSinceTick:
 0 800c408c: e59f0020 LDR r0,0x800C40B4
 956 0 800c4090: e3a024a6 MOV r2,#0xA6000000
 957 0 800c4094: e3822503 ORR r2,r2,#0xC00000
 958 0 800c4098: e5901000 LDR r1,[r0]
 959 0 800c409c: e5920000 LDR r0,[r2]
 960 0 800c40a0: e3a03ee6 MOV r3,#0xE60
 961 0 800c40a4: e3833006 ORR r3,r3,#6

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 18

 Using the Driver

Note: The trace information above can also be viewed via the PlugIn’s Trace
Display Window which provides a GUI-based interface and source line
information instead of just symbols. Please see the next chapter for details
on using the PlugIn.

Coprocessor and
Peripheral Register
Access

Platform Builder’s IDE only provides access to a subset of CPU registers.
MON supports access to a full set of CPU and peripheral registers. This is
configured via startup files and can be customized by users. For full details
on configuration and usage consult the MAJIC User’s Manual. Below are
some simple examples for the Intel PXA250 demonstrating the power of
this feature.

In this screen shot we told the debugger to display, via the Display Word
(dw) command, a bank of peripheral registers for an on-chip serial port.
This peripheral has four registers starting at the physical memory address
41000000. To the right of the register’s value display is a field breakdown
of the individual bits/fields. Multi-bit fields are displayed as
fieldname=val and single-bit fields are displayed in uppercase for 1
and lowercase for value 0.

MON>dw sscr0 ssitr
sscr0:
41000000:P 00000000 (scr=0 sse ecs frf=0 dss=0)
sscr1:
41000004:P 00000000 (strf efwr rft=0 tft=0 sph spo lbm tie rie)
sssr:
41000008:P 0000F004 (rfl=f tfl=0 ror rfs tfs bsy rne TNF)
ssitr:
4100000c:P 00000000 (tror trfs ttfs)

The registers can also be edited via simple commands. The Enter Word
(ew) command (shown below) modifys a field within a register.

MON>ew sscr0.dss=2

MON>dw sscr0
sscr0:
41000000:P 00000002 (scr=0 sse ecs frf=0 dss=2)

Memory Access Platform Builder’s is limited to examining Virtual Memory, although
developers often find it necessary to reach down inside and look at physical
memory. MON commands can be used to examine such memory. For
example: We know that the boot code on ARM targets start at address 0,
but in many virtual memory-based applications the boot code is no longer
visible once you have booted up. By using a physical memory address
qualifier (:p) in MON’s Display Word command we can see this memory.
The “L 4” after the address says to list a range of four words and the “,i”
says to display the words as instructions.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 19

 Using the Driver

MON>dw 0:p L 4,i
00000000:P ea0003fe B 0x1000 ;
00000004:P 00000000 ANDEQ r0,r0,r0
00000008:P 00000000 ANDEQ r0,r0,r0
0000000c:P 00000000 ANDEQ r0,r0,r0

Option
Configuration

There are many configuration options available for your MAJIC probe.
This aspect is covered in detail within the MAJIC User’s Manual. As a
simple example here we cover the interesting case of using the Vector
Catch feature to stop when an exception occurs. Note that is example is
specific to ARM and Intel® XScaleTM based cores.

By default, the Vector Catch option is configured off for the Windows CE
environment. We chose this default because we envision most users in a
complex environment, like Windows CE, will want the default behavior of
their OS when an exception does occur. MON’s Display Option and Enter
Option commands allow us to modify the default settings.

MON>dov vector_catch
EO vector_catch = 0x0 // Default: 0x0
// Valid values: 0x0 - 0x1ff
//
// Determines which exception conditions are detected and control passed
// back to the debugger. The bits correspond as follows:
// Bit# Field Cause
// 0 0x001 Reset
// 1 0x002 Undefined Instruction
// 2 0x004 Software Interupt
// 3 0x008 Prefetch Abort
// 4 0x010 Data Abort
// 5 0x020 Address Exception
// 6 0x040 IRQ
// 7 0x080 FIQ
// 8 0x100 Error

MON>eo vector_catch = 0x2

As you can see from the Enter Option command above, we configured the
probe so as to stop execution when an Undefined Instruction exception
occurs.

Shuting Down The Driver automatically shuts down as soon as all the connections to it are
closed. Unless you manually started the Driver there should be no need to
manually shutdown the driver via the window close button. Note that both
Platform Builder and the PlugIn are clients of the Driver, so both need to be
disconnected (if connected).

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 20

 Using the PlugIn

5

Using the PlugIn

This chapter shows you the capabilities and usage of the MAJIC eXDI
PlugIn.

Launching the PlugIn

The PlugIn can be started from the Platform Builder’s menu item Tools ->
Plug In -> MAJIC eXDI PlugIn. The PlugIn’s main window pops up as
shown below:

Now select the menu item Debug -> Connect to MAJIC Probe. If your
setup is configured correctly the Driver starts up and brings up the MAJIC
eXDI Monitor Window (example shown below). Note that when bringing
up the PlugIn the MAJIC eXDI Monitor Window is typically already
running. In such case, the PlugIn just connects to the existing driver
instance.

Note that some of the PlugIn Window’s buttons become enabled after
successful connection.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 21

 Using the PlugIn

Using the Trace Window

One of the PlugIn’s most useful features is the GUI-based Trace
Display Window. It provides a convenient scrollable access to any
captured trace data in your MAJIC probe. Use the PlugIn’s menu
item View -> Trace Display or the button shown to the right to open the
Trace Window.

Enabling Trace: You can then use the [Display] button to get the trace data from the Driver
and display it. However, this assumes you have actually captured some
data. To do that you may need to Enable Trace via the menu item
Debug -> Trace Enable or the button show to the right, followed
by a run / break sequence to actually capture some trace from a real
target run.

Note: Some processors with advanced trace features require the setup of a trace
specification to determine what is to be captured. Please refer to your
MAJIC User’s Manual for details on trace setup.

Below is a sample Trace Display window:

The Window title bar shows the total number of captured frames of trace
data and the toolbar indicates the current display mode.

Trace Display Modes The Trace Display Window’s toolbar allows you update the trace data and
select the display mode. The available modes are listed below.

Instr Displays valid instruction accesses in disassembled form. If the address of
an instruction corresponds to a source line, then the source line is displayed
first on its own line. If no source line exists, but a symbolic label
corresponds to the address, then the symbol is displayed first on its own
line.

Mixed Combination of Instr and Data display modes.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 22

 Using the PlugIn

Data Displays valid data accesses in a formatted form. The R/W column
displays the kind of access that occurred and the width is implied by the
Value field. Note that many CPUs do not support data tracing.

Source Displays only the source or labels associated with valid instruction frames.
This allows you to concisely see your execution flow from a source code
point of view.

Trace filters and searching are also available via MON commands. Please
refer to your MAJIC User’s Manual for details.

Miscellaneous Features

Symbol Reload Symbol/Source information is automatically loaded from Platform Builder
upon the first reference. However, because of the dynamic nature of the
Windows CE OS new programs might get loaded (or even reloaded at new
addresses). In such a case, you must manually tell the Driver to reload
symbols from Platform Builder. This is accomplished via the menu item
Debug -> Reload Symbols or the toolbar button to the right.

Break The PlugIn provides a break button that mirrors the behavior of the break
button in Platform Builder. Normally there is no reason to use this button,
but some times the Platform Builder user interface is so busy starting and
stopping the processor for various reasons that it never acts upon a break
request. The extra break provided here gives you an easy way to halt the
processor if such a case arises. The break facility can used via the menu
item Debug -> Break or the button to the right.

Always On Top Many times it can be inconvenient to switch back and forth between the
PlugIn and Platform Builder Windows. The PlugIn has a feature to allow it
to always be a top level window. This allows you to maximize your
Platform Builder Window and still see and operate with your PlugIn
Windows. The feature is enabled via the menu item: View -> Always On
Top.

The Settings Window

The Settings Window provides control of Driver/PlugIn File Logging and
the Auto Start Execution feature. The Settings Window can be launched
via the toolbar and the menu item View -> Settings.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 23

 Using the PlugIn

Auto Start Execution Some users may find that when starting up the Driver/Probe they don’t need
the added step of halting at the reset address, but would rather just auto-
start execution. This behavior can be accomplished by clicking the
checkbox below and selecting the [OK] button.

Capturing a Debug
Log Session

If you encounter problems that you think related your MAJIC Probe or
software we may ask you to capture a debug log session so we can
investigate the issue. The log will capture all the communication between
your Probe, Driver, PlugIn and Platform Builder. Below are details of how
to enable the log capture.

Before you begin a debug session from Platform Builder, start the MAJIC
eXDI PlugIn by selecting Platform Builders menu Tools -> Plug In ->
MAJIC eXDI PlugIn.

From the PlugIn Toolbar select the Settings ICON or menu item View ->
Settings. This brings up the following window:

Select the Session Logging check-box. This enables the items contained
in the session logging group. Check the eXDI Call Logging and the
Time Stamp Log Entries check boxes followed by selecting the [OK]
button. We suggest leaving the MDI Call Logging unchecked unless EPI

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 24

 Using the PlugIn

has asked you to enable it. The Log File Name defaults to a location on
the Drive C:. You can change this to any filename and/or location you
wish. All the Driver captured log information is stored in this file.

You can now shutdown the PlugIn if you wish since it will communicate
this setup information to the MAJIC eXDI Driver.

Note: The PlugIn itself also has a log file that is enabled via the Session Logging
checkbox. The log file name is majic_exdi_plugin.log and it is put
in the same directory referenced in the Log File Name edit box. If the
issue you are trying to capture involves interactions with the PlugIn then
this file can also be relevant.

Session Capture: If you enable Session Logging and leave the rest of the check boxes
within Session Logging unchecked what is captured is all the information
sent to the eXDI Driver Monitor Window. You might find this useful for
recording the output that occurs in this window.

Disconnecting the PlugIn

To disconnect the PlugIn from the Driver simply select the menu item
Debug -> Disconnect from MAJIC probe or the button shown
to the right.

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 25

 Support/Contact Information

6
Support/Contact Information

EPI Support

EMail: support@epitools.com

Internet: www.epitools.com

Telephone: 408 957-0350

Microsoft Support

Please note that EPI support is specific to the EPI distributed tools, which
does not include Platform Builder. Please contact Microsoft’s Support
department via the web address below and click on the support link for help
with Platform Builder and Win CE .NET specific questions.

http://www.mswep.com

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 27

 Index

Index

--A--
Always on Top21
Auto Start Execution22

--B--
Break..21
Breakpoint Issues13
Build Options..................................8

--C--
Configuring Platform Builder.......7

--D--
Debug Log22
Debugging a Dowloaded Image9
Display Word Command.............16
Driver Monitor Window................9
drivers..4

--E--
EBOOT....................................10, 11
Enter Word Command16
eXDI ...1
eXDI Monitor Window................15
eXDI PlugIn1
Extended..................................2, 3, 4
Extended Debug Interface.............1

--F--
File Logging21

--H--
Hardware Breakpoint..................11

--I--
Introduction1

--L--
Launching the PlugIn.................. 19
Load Notification Hook............... 13

--M--
MAJIC .. 1
MAJIC eXDI PlugIn 19
majic_exdi_plugin.log 23
MDI Call Logging........................ 23
Memory Access 16
Microsoft’s Platform Builder 1

--O--
Option Configuration.................. 17

--P--
purple breakpoint 13

--R--
Register Access............................. 16

--S--
Session Capture 23
Settings Dialog 21
Shutting Down 17
Support ... 25
Symbol Reload 21

--T--
Table of Contents........................... v
TimeStamps.................................. 22

--U--
Using the Driver............................. 9

--V--
Vector Catch................................. 17

Revision 3.0 MAJIC Windows CE .NET eXDI User’s Guide 28

	Table of Contents
	Introduction
	About this Manual
	What is eXDI?
	Supported Windows CE Environments
	Related Documentation
	Notational Conventions

	Installation
	Getting Started
	Updating the Registry
	Test Your Driver Setup/Installation
	eXDI Files

	Configuring Platform Builder
	Configuring your Platform Builder Project to use MAJIC

	Using the Driver
	Debugging a Downloadable Image
	Debugging a Boot Image
	Breakpoint Issues
	Using the eXDI Monitor Window
	Trace Setup and Display
	Coprocessor and Peripheral Register Access
	Memory Access
	Option Configuration
	Shuting Down

	Using the PlugIn
	Launching the PlugIn
	Using the Trace Window
	Trace Display Modes

	Miscellaneous Features
	Symbol Reload
	Break
	Always On Top

	The Settings Window
	Auto Start Execution
	Capturing a Debug Log Session

	Disconnecting the PlugIn

	Support/Contact Information
	EPI Support
	Microsoft Support

	Index

